Difference between revisions of "Genomics"

From PGI

Jump to: navigation, search
 
 
(27 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<p><strong>Genomics</strong> is the study of an organism's entire <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a>. In contrast, the investigation of single genes, their functions and roles, something very common in today's medical and biological research, and a primary focus of <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a>, does not fall into the definition of genomics, unless the aim of this genetic, pathway, and functional information analysis is to elucidate its effect on, place in, and response to the entire genome's networks.</p>
+
<p><font size="3"><strong><font size="5">What is genomics?</font><br />
<table summary="Contents" class="toc" id="toc">
+
<br />
    <tbody>
+
Genomics</strong> is the [[omics]] study of [[gene]]s of individual organisms,&nbsp;populations, and species. <br />
        <tr>
+
</font></p>
            <td><br />
+
<p><font size="3">It is also a paradigm of performing biological science that deviates from&nbsp;investigating single genes, their functions, and roles. <br />
            </td>
+
</font></p>
        </tr>
+
<p><font size="3">The main reason of an independent biological discipline is that it deals with very large sets of genetic information to automatically analyze information using interaction and network concepts. </font></p>
    </tbody>
+
<p><font size="3">Genomics inevitably employs high performance computing and bioinformatics technologies.</font></p>
</table>
+
<p><span class="mw-headline"><font size="4">&nbsp; </font></span></p>
<script type="text/javascript">
+
<div v:shape="_x0000_s1026"><span style="FONT-SIZE: 32pt"><font color="#339966" size="5">&quot;[[Genome sequencing is not Genomics]]&quot;</font></span></div>
//<![CDATA[
+
<p>&nbsp;</p>
if (window.showTocToggle) { var tocShowText = "show"; var tocHideText = "hide"; showTocToggle(); }
+
<p><strong><span class="mw-headline"><font size="4">History of the field</font></span></strong></p>
//]]>
+
<p><font size="3">Genomics was practically founded by Fred Sanger group in 1970s when they developed&nbsp;a gene sequencing technique and completed the first genomes; namely bacteriophage &Phi;-X174; (5,368 bp),&nbsp;the human mitochondrial genome, and lamda virus.</font></p>
</script>
+
<p><font size="3">In 1972, Walter Fiers and his team at the Laboratory of Molecular Biology of the University of Ghent (Ghent, Belgium) were the first to determine the sequence of a gene: the gene for Bacteriophage MS2 coat protein.<sup id="_ref-0" class="reference">[1]</sup> In 1976, the team determined the complete nucleotide-sequence of bacteriophage MS2-RNA.<sup id="_ref-1" class="reference">[2]</sup> The first DNA-based genome to be sequenced in its entirety was that of bacteriophage &Phi;-X174; (5,368 bp), sequenced by Frederick Sanger in 1977<sup id="_ref-2" class="reference">[3]</sup>. The first free-living organism to be sequenced was that of <em>Haemophilus influenzae</em> (1.8 Mb) in 1995, and since then genomes are being sequenced at a rapid pace. A rough draft of the human genome was completed by Sanger centre and the Human Genome Project in early 2001.</font></p>
<p><a id="History_of_the_field" name="History_of_the_field"></a></p>
+
<p><font size="3">As of September 2007, the complete sequence was known of about 1879 viruses <sup id="_ref-3" class="reference">[4]</sup>, 577 bacterial species and roughly 23 eukaryote organisms, of which about half are fungi. <sup id="_ref-4" class="reference">[5]</sup> Most of the bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as <em>Haemophilus influenzae</em>. Of the other sequenced species, most were chosen because they were well-studied model organisms or promised to become good models. Yeast (<em>Saccharomyces cerevisiae</em>) has long been an important model organism for the eukaryotic cell, while the fruit fly <em>Drosophila melanogaster</em> has been a very important tool (notably in early pre-molecular genetics). The worm <em>Caenorhabditis elegans</em> is an often used simple model for multicellular organisms. The zebrafish <em>Brachydanio rerio</em> is used for many developmental studies on the molecular level and the flower <em>Arabidopsis thaliana</em> is a model organism for flowering plants. The Japanese pufferfish (<em>Takifugu rubripes</em>) and the spotted green pufferfish (<em>Tetraodon nigroviridis</em>) are interesting because of their small and compact genomes, containing very little non-coding DNA compared to most species. <sup id="_ref-5" class="reference">[6]</sup> <sup id="_ref-6" class="reference">[7]</sup> The mammals dog (<em>Canis familiaris</em>), <sup id="_ref-7" class="reference">[8]</sup> brown rat (<em>Rattus norvegicus</em>), mouse (<em>Mus musculus</em>), and chimpanzee (<em>Pan troglodytes</em>) are all important model animals in medical research.</font></p>
<h2><span class="editsection"></span><span class="mw-headline">History of the field</span></h2>
+
<p><font size="3">&nbsp;</font></p>
<p>Genomics can be said to have appeared in the <a title="1980s" href="http://en.wikipedia.org/wiki/1980s">1980s</a>, and took off in the <a title="1990s" href="http://en.wikipedia.org/wiki/1990s">1990s</a> with the initiation of <a title="Genome projects" href="http://en.wikipedia.org/wiki/Genome_projects">genome projects</a> for several <a title="Biological species" href="http://en.wikipedia.org/wiki/Biological_species">biological species</a>. A major branch of genomics is still concerned with <a title="Sequencing" href="http://en.wikipedia.org/wiki/Sequencing">sequencing</a> the genomes of various organisms, but the knowledge of full genomes has created the possibility for the field of <a title="Functional genomics" href="http://en.wikipedia.org/wiki/Functional_genomics">functional genomics</a>, mainly concerned with patterns of <a title="Gene expression" href="http://en.wikipedia.org/wiki/Gene_expression">gene expression</a> during various conditions. The most important tools here are <a title="Microarray" href="http://en.wikipedia.org/wiki/Microarray">microarrays</a> and <a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics">bioinformatics</a>. Study of the full set of proteins in a cell type or tissue, and the changes during various conditions, is called <a title="Proteomics" href="http://en.wikipedia.org/wiki/Proteomics">proteomics</a>.</p>
+
<p><strong><span class="mw-headline"><font size="4">Bacteriophage Genomics</font></span></strong></p>
<p>In <a title="1972" href="http://en.wikipedia.org/wiki/1972">1972</a>, <a title="Walter Fiers" href="http://en.wikipedia.org/wiki/Walter_Fiers">Walter Fiers</a> and his team at the Laboratory of Molecular Biology of the <a title="University of Ghent" href="http://en.wikipedia.org/wiki/University_of_Ghent">University of Ghent</a> (<a title="Ghent" href="http://en.wikipedia.org/wiki/Ghent">Ghent</a>, <a title="Belgium" href="http://en.wikipedia.org/wiki/Belgium">Belgium</a>) were the first to determine the sequence of a gene: the gene for <a title="Bacteriophage MS2" href="http://en.wikipedia.org/wiki/Bacteriophage_MS2">Bacteriophage MS2</a> coat protein.<sup class="reference" id="_ref-0"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-0">[1]</a></sup> In <a title="1976" href="http://en.wikipedia.org/wiki/1976">1976</a>, the team determined the complete nucleotide-sequence of bacteriophage MS2-RNA.<sup class="reference" id="_ref-1"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-1">[2]</a></sup> The first DNA-based genome to be sequenced in its entirety was that of <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">bacteriophage</a> <a title="Phi-X174 phage" href="http://en.wikipedia.org/wiki/Phi-X174_phage">&Phi;-X174;</a> (5,368 <a title="Base pair" href="http://en.wikipedia.org/wiki/Base_pair">bp</a>), sequenced by <a title="Frederick Sanger" href="http://en.wikipedia.org/wiki/Frederick_Sanger">Frederick Sanger</a> in <a title="1977" href="http://en.wikipedia.org/wiki/1977">1977</a><sup class="reference" id="_ref-2"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-2">[3]</a></sup>. The first free-living organism to be sequenced was that of <em><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae">Haemophilus influenzae</a></em> (1.8 <a title="Base pair" href="http://en.wikipedia.org/wiki/Base_pair">Mb</a>) in <a title="1995" href="http://en.wikipedia.org/wiki/1995">1995</a>, and since then genomes are being sequenced at a rapid pace. A rough draft of the human genome was completed by the <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project">Human Genome Project</a> in early <a title="2001" href="http://en.wikipedia.org/wiki/2001">2001</a>, creating much fanfare.</p>
+
<p><font size="3">Bacteriophages have played and continue to play a key role in bacterial genetics and molecular biology. Historically, they were used to define gene structure and gene regulation. Also the first genome to be sequenced was a bacteriophage. However, bacteriophage research did not lead the genomics revolution, which is clearly dominated by bacterial genomics. Only very recently has the study of bacteriophage genomes become prominent, thereby enabling researchers to understand the mechanisms underlying phage evolution. Bacteriophage genome sequences can be obtained through direct sequencing of isolated bacteriophages, but can also be derived as part of microbial genomes. Analysis of bacterial genomes has shown that a substantial amount of microbial DNA consists of prophage sequences and prophage-like elements. A detailed database mining of these sequences offers insights into the role of prophages in shaping the bacterial genome.<sup id="_ref-McGrath_0" class="reference">[9]</sup></font></p>
<p>As of September 2007, the complete sequence was known of about 1879 <a title="Virus" href="http://en.wikipedia.org/wiki/Virus">viruses</a> <sup class="reference" id="_ref-3"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-3">[4]</a></sup>, 577 <a title="Bacteria" href="http://en.wikipedia.org/wiki/Bacteria">bacterial</a> species and roughly 23 <a title="Eukaryote" href="http://en.wikipedia.org/wiki/Eukaryote">eukaryote</a> organisms, of which about half are <a title="Fungi" href="http://en.wikipedia.org/wiki/Fungi">fungi</a>. <sup class="reference" id="_ref-4"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-4">[5]</a></sup> Most of the bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as <em><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae">Haemophilus influenzae</a></em>. Of the other sequenced species, most were chosen because they were well-studied model organisms or promised to become good models. Yeast (<em><a title="Saccharomyces cerevisiae" href="http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae">Saccharomyces cerevisiae</a></em>) has long been an important <a title="Model organism" href="http://en.wikipedia.org/wiki/Model_organism">model organism</a> for the <a title="Eukaryotic cell" href="http://en.wikipedia.org/wiki/Eukaryotic_cell">eukaryotic cell</a>, while the fruit fly <em><a title="Drosophila melanogaster" href="http://en.wikipedia.org/wiki/Drosophila_melanogaster">Drosophila melanogaster</a></em> has been a very important tool (notably in early pre-molecular <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics">genetics</a>). The worm <em><a title="Caenorhabditis elegans" href="http://en.wikipedia.org/wiki/Caenorhabditis_elegans">Caenorhabditis elegans</a></em> is an often used simple model for <a title="Multicellular organism" href="http://en.wikipedia.org/wiki/Multicellular_organism">multicellular organisms</a>. The zebrafish <em><a title="Brachydanio rerio" href="http://en.wikipedia.org/wiki/Brachydanio_rerio">Brachydanio rerio</a></em> is used for many developmental studies on the molecular level and the flower <em><a title="Arabidopsis thaliana" href="http://en.wikipedia.org/wiki/Arabidopsis_thaliana">Arabidopsis thaliana</a></em> is a model organism for flowering plants. The <a title="Japanese pufferfish" class="new" href="http://en.wikipedia.org/w/index.php?title=Japanese_pufferfish&amp;action=edit">Japanese pufferfish</a> (<em><a title="Takifugu rubripes" href="http://en.wikipedia.org/wiki/Takifugu_rubripes">Takifugu rubripes</a></em>) and the <a title="Spotted green pufferfish" class="new" href="http://en.wikipedia.org/w/index.php?title=Spotted_green_pufferfish&amp;action=edit">spotted green pufferfish</a> (<em><a title="Tetraodon nigroviridis" href="http://en.wikipedia.org/wiki/Tetraodon_nigroviridis">Tetraodon nigroviridis</a></em>) are interesting because of their small and compact genomes, containing very little non-coding DNA compared to most species. <sup class="reference" id="_ref-5"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-5">[6]</a></sup> <sup class="reference" id="_ref-6"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-6">[7]</a></sup> The mammals dog (<em><a title="Canis familiaris" href="http://en.wikipedia.org/wiki/Canis_familiaris">Canis familiaris</a></em>), <sup class="reference" id="_ref-7"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-7">[8]</a></sup> brown rat (<em><a title="Rattus norvegicus" href="http://en.wikipedia.org/wiki/Rattus_norvegicus">Rattus norvegicus</a></em>), mouse (<em><a title="Mus musculus" href="http://en.wikipedia.org/wiki/Mus_musculus">Mus musculus</a></em>), and chimpanzee (<em><a title="Pan troglodytes" href="http://en.wikipedia.org/wiki/Pan_troglodytes">Pan troglodytes</a></em>) are all important model animals in medical research.</p>
+
<p>&nbsp;</p>
<p><a id="Bacteriophage_Genomics" name="Bacteriophage_Genomics"></a></p>
+
<p><strong><span class="mw-headline"><font size="4">Cyanobacteria Genomics</font></span></strong></p>
<h2><span class="editsection"></span><span class="mw-headline">Bacteriophage Genomics</span></h2>
+
<p><font size="3">At present there are 24 cyanobacteria for which a total genome sequence is available. 15 of these cyanobacteria come from the marine environment. These are six <em>Prochlorococcus</em><em>Synechococcus</em> strains, <em>Trichodesmium erythraeum</em> IMS101 and <em>Crocosphaera watsonii</em> [[WH8501. Several studies have demonstrated how these sequences could be used very successfully to infer important ecological and physiological characteristics of marine cyanobacteria. However, there are many more genome projects currently in progress, amongst those there are further <em>Prochlorococcus</em> and marine <em>Synechococcus</em> isolates, <em>Acaryochloris</em> and <em>Prochloron</em>, the N<sub>2</sub>-fixing filamentous cyanobacteria <em>Nodularia spumigena</em>, <em>Lyngbya aestuarii</em> and <em>Lyngbya majuscula</em>, as well as bacteriophages infecting marine cyanobaceria. Thus, the growing body of genome information can also be tapped in a more general way to address global problems by applying a comparative approach. Some new and exciting examples of progress in this field are the identification of genes for regulatory RNAs, insights into the evolutionary origin of photosynthesis, or estimation of the contribution of horizontal gene transfer to the genomes that have been analyzed.<sup id="_ref-Herrero_0" class="reference">[10]</sup></font></p>
<p><a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">Bacteriophages</a> have played and continue to play a key role in bacterial <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics">genetics</a> and <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a>. Historically, they were used to define <a title="Gene" href="http://en.wikipedia.org/wiki/Gene">gene</a> structure and gene regulation. Also the first <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a> to be sequenced was a <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">bacteriophage</a>. However, bacteriophage research did not lead the genomics revolution, which is clearly dominated by bacterial genomics. Only very recently has the study of bacteriophage genomes become prominent, thereby enabling researchers to understand the mechanisms underlying <a title="Phage" href="http://en.wikipedia.org/wiki/Phage">phage</a> evolution. Bacteriophage genome sequences can be obtained through direct sequencing of isolated bacteriophages, but can also be derived as part of microbial genomes. Analysis of bacterial genomes has shown that a substantial amount of microbial DNA consists of <a title="Prophage" href="http://en.wikipedia.org/wiki/Prophage">prophage</a> sequences and prophage-like elements. A detailed database mining of these sequences offers insights into the role of prophages in shaping the bacterial genome.<sup class="reference" id="_ref-McGrath_0"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-McGrath">[9]</a></sup></p>
+
<p><font size="4">[[Genome sequencing and genomics]]</font></p>
<p><a id="Cyanobacteria_Genomics" name="Cyanobacteria_Genomics"></a></p>
+
<p><strong><span class="mw-headline"><font size="4">See also</font></span></strong></p>
<h2><span class="editsection"></span><span class="mw-headline">Cyanobacteria Genomics</span></h2>
 
<p>At present there are 24 <a title="Cyanobacteria" href="http://en.wikipedia.org/wiki/Cyanobacteria">cyanobacteria</a> for which a total genome sequence is available. 15 of these cyanobacteria come from the marine environment. These are six <em><a title="Prochlorococcus" href="http://en.wikipedia.org/wiki/Prochlorococcus">Prochlorococcus</a></em> strains, seven marine <em><a title="Synechococcus" href="http://en.wikipedia.org/wiki/Synechococcus">Synechococcus</a></em> strains, <em><a title="Trichodesmium erythraeum" class="new" href="http://en.wikipedia.org/w/index.php?title=Trichodesmium_erythraeum&amp;action=edit">Trichodesmium erythraeum</a></em> IMS101 and <em><a title="Crocosphaera watsonii" class="new" href="http://en.wikipedia.org/w/index.php?title=Crocosphaera_watsonii&amp;action=edit">Crocosphaera watsonii</a></em> [[WH8501. Several studies have demonstrated how these sequences could be used very successfully to infer important ecological and physiological characteristics of marine cyanobacteria. However, there are many more genome projects currently in progress, amongst those there are further <em><a title="Prochlorococcus" href="http://en.wikipedia.org/wiki/Prochlorococcus">Prochlorococcus</a></em> and marine <em><a title="Synechococcus" href="http://en.wikipedia.org/wiki/Synechococcus">Synechococcus</a></em> isolates, <em><a title="Acaryochloris" class="new" href="http://en.wikipedia.org/w/index.php?title=Acaryochloris&amp;action=edit">Acaryochloris</a></em> and <em><a title="Prochloron" class="new" href="http://en.wikipedia.org/w/index.php?title=Prochloron&amp;action=edit">Prochloron</a></em>, the N<sub>2</sub>-fixing filamentous cyanobacteria <em><a title="Nodularia spumigena" class="new" href="http://en.wikipedia.org/w/index.php?title=Nodularia_spumigena&amp;action=edit">Nodularia spumigena</a></em>, <em><a title="Lyngbya aestuarii" class="new" href="http://en.wikipedia.org/w/index.php?title=Lyngbya_aestuarii&amp;action=edit">Lyngbya aestuarii</a></em> and <em><a title="Lyngbya majuscula" href="http://en.wikipedia.org/wiki/Lyngbya_majuscula">Lyngbya majuscula</a></em>, as well as <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">bacteriophages</a> infecting marine cyanobaceria. Thus, the growing body of genome information can also be tapped in a more general way to address global problems by applying a comparative approach. Some new and exciting examples of progress in this field are the identification of genes for regulatory RNAs, insights into the evolutionary origin of <a title="Photosynthesis" href="http://en.wikipedia.org/wiki/Photosynthesis">photosynthesis</a>, or estimation of the contribution of horizontal gene transfer to the genomes that have been analyzed.<sup class="reference" id="_ref-Herrero_0"><a title="" href="http://en.wikipedia.org/wiki/Genomics#_note-Herrero">[10]</a></sup></p>
 
<p><a id="See_also" name="See_also"></a></p>
 
<h2><span class="editsection"></span><span class="mw-headline">See also</span></h2>
 
 
<ul>
 
<ul>
     <li><a title="Computational genomics" href="http://en.wikipedia.org/wiki/Computational_genomics">Computational genomics</a></li>
+
     <li><font size="3">[[Pangenomics]] and [[Pangenome]]</font></li>
     <li><a title="Nitrogenomics" href="http://en.wikipedia.org/wiki/Nitrogenomics">Nitrogenomics</a></li>
+
    <li><font size="3">[[Personal Genome Project]]</font></li>
 +
    <li><font size="3">[[Omics]] </font></li>
 +
    <li><font size="3">[[Proteomics]] </font></li>
 +
     <li><font size="3">[[Interactomics]] </font></li>
 +
    <li><font size="3">[[Functional genomics]] </font></li>
 +
    <li><font size="3">[[Computational genomics]] </font></li>
 +
    <li><font size="3">[[Nitrogenomics]]</font></li>
 +
    <li><font size="3">[[Pathogenomics]]</font></li>
 
</ul>
 
</ul>
<p><a id="References" name="References"></a></p>
+
<p>&nbsp;</p>
<h2><span class="editsection"></span><span class="mw-headline">References</span></h2>
+
<p><strong><span class="mw-headline"><font size="4">References</font></span></strong></p>
 
<ol class="references">
 
<ol class="references">
     <li id="_note-0"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-0">^</a></strong> Min Jou W, Haegeman G, Ysebaert M, Fiers W., Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein, Nature. 1972 May 12;237(5350):82-8</li>
+
     <li id="_note-0"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-0">^</a></strong> Min Jou W, Haegeman G, Ysebaert M, Fiers W., Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein, Nature. 1972 May 12;237(5350):82-8 </font></li>
     <li id="_note-1"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-1">^</a></strong> Fiers W et al., Complete nucleotide-sequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene, Nature, 260, 500-507, 1976</li>
+
     <li id="_note-1"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-1">^</a></strong> Fiers W et al., Complete nucleotide-sequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene, Nature, 260, 500-507, 1976 </font></li>
     <li id="_note-2"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-2">^</a></strong> Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-95</li>
+
     <li id="_note-2"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-2">^</a></strong> Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-95 </font></li>
     <li id="_note-3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-3">^</a></strong> <a rel="nofollow" title="http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/virostat.html" class="external text" href="http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/virostat.html"><em>The Viral Genomes Resource</em>, NCBI Friday, 14 September, 2007</a></li>
+
     <li id="_note-3"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-3">^</a></strong> <a class="external text" title="http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/virostat.html" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/virostat.html"><em>The Viral Genomes Resource</em>, NCBI Friday, 14 September, 2007</a></font></li>
     <li id="_note-4"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-4">^</a></strong> <a rel="nofollow" title="http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html" class="external text" href="http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html"><em>Genome Project Statistic</em>, NCBI Friday, 14 September, 2007</a></li>
+
     <li id="_note-4"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-4">^</a></strong> <a class="external text" title="http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html"><em>Genome Project Statistic</em>, NCBI Friday, 14 September, 2007</a></font></li>
     <li id="_note-5"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-5">^</a></strong> <a rel="nofollow" title="http://news.bbc.co.uk/1/hi/sci/tech/3760766.stm" class="external text" href="http://news.bbc.co.uk/1/hi/sci/tech/3760766.stm">BBC article <em>Human gene number slashed</em> from Wednesday, 20 October, 2004</a></li>
+
     <li id="_note-5"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-5">^</a></strong> <a class="external text" title="http://news.bbc.co.uk/1/hi/sci/tech/3760766.stm" rel="nofollow" href="http://news.bbc.co.uk/1/hi/sci/tech/3760766.stm">BBC article <em>Human gene number slashed</em> from Wednesday, 20 October, 2004</a></font></li>
     <li id="_note-6"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-6">^</a></strong> <a rel="nofollow" title="http://www.cbse.ucsc.edu/news/2003/10/16/pufferfish_fruitfly/index.shtml" class="external text" href="http://www.cbse.ucsc.edu/news/2003/10/16/pufferfish_fruitfly/index.shtml">CBSE News, Thursday October 16, 2003</a></li>
+
     <li id="_note-6"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-6">^</a></strong> <a class="external text" title="http://www.cbse.ucsc.edu/news/2003/10/16/pufferfish_fruitfly/index.shtml" rel="nofollow" href="http://www.cbse.ucsc.edu/news/2003/10/16/pufferfish_fruitfly/index.shtml">CBSE News, Thursday October 16, 2003</a></font></li>
     <li id="_note-7"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-7">^</a></strong> <a rel="nofollow" title="http://www.genome.gov/12511476" class="external text" href="http://www.genome.gov/12511476">NHGRI, pressrelease of the publishing of the dog genome</a></li>
+
     <li id="_note-7"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-7">^</a></strong> <a class="external text" title="http://www.genome.gov/12511476" rel="nofollow" href="http://www.genome.gov/12511476">NHGRI, pressrelease of the publishing of the dog genome</a></font></li>
     <li id="_note-McGrath"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-McGrath_0">^</a></strong> <cite style="font-style: normal;" class="book">Mc Grath S and van Sinderen D (editors). (2007). <em><a rel="nofollow" title="http://www.horizonpress.com/phage" class="external text" href="http://www.horizonpress.com/phage">Bacteriophage: Genetics and Molecular Biology</a></em>, 1st ed., Caister Academic Press. <a rel="nofollow" title="http://www.horizonpress.com/phage" class="external text" href="http://www.horizonpress.com/phage">ISBN 978-1-904455-14-1</a> .</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bacteriophage%3A+Genetics+and+Molecular+Biology&amp;rft.au=Mc+Grath+S+and+van+Sinderen+D+%28editors%29.&amp;rft.edition=1st+ed.&amp;rft.pub=Caister+Academic+Press&amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fphage" class="Z3988">&nbsp;</span></li>
+
     <li id="_note-McGrath"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-McGrath_0">^</a></strong> <cite style="FONT-STYLE: normal" class="book">Mc Grath S and van Sinderen D (editors). (2007). <em><a class="external text" title="http://www.horizonpress.com/phage" rel="nofollow" href="http://www.horizonpress.com/phage">Bacteriophage: Genetics and Molecular Biology</a></em>, 1st ed., Caister Academic Press. <a class="external text" title="http://www.horizonpress.com/phage" rel="nofollow" href="http://www.horizonpress.com/phage">ISBN 978-1-904455-14-1</a> .</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bacteriophage%3A+Genetics+and+Molecular+Biology&amp;rft.au=Mc+Grath+S+and+van+Sinderen+D+%28editors%29.&amp;rft.edition=1st+ed.&amp;rft.pub=Caister+Academic+Press&amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fphage">&nbsp;</span></font></li>
     <li id="_note-Herrero"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-Herrero_0">^</a></strong> <cite style="font-style: normal;" class="book">Herrero A and Flores E (editor). (2008). <em><a rel="nofollow" title="http://www.horizonpress.com/cyan" class="external text" href="http://www.horizonpress.com/cyan">The Cyanobacteria: Molecular Biology, Genomics and Evolution</a></em>, 1st ed., Caister Academic Press. <a rel="nofollow" title="http://www.horizonpress.com/cyan" class="external text" href="http://www.horizonpress.com/cyan">ISBN 978-1-904455-15-8</a> .</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Cyanobacteria%3A+Molecular+Biology%2C+Genomics+and+Evolution&amp;rft.au=Herrero+A+and+Flores+E+%28editor%29.&amp;rft.edition=1st+ed.&amp;rft.pub=Caister+Academic+Press&amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fcyan" class="Z3988"> <br />
+
     <li id="_note-Herrero"><font size="3"><strong><a title="" href="http://en.wikipedia.org/wiki/Genomics#_ref-Herrero_0">^</a></strong> <cite style="FONT-STYLE: normal" class="book">Herrero A and Flores E (editor). (2008). <em><a class="external text" title="http://www.horizonpress.com/cyan" rel="nofollow" href="http://www.horizonpress.com/cyan">The Cyanobacteria: Molecular Biology, Genomics and Evolution</a></em>, 1st ed., Caister Academic Press. <a class="external text" title="http://www.horizonpress.com/cyan" rel="nofollow" href="http://www.horizonpress.com/cyan">ISBN 978-1-904455-15-8</a> .</cite></font><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Cyanobacteria%3A+Molecular+Biology%2C+Genomics+and+Evolution&amp;rft.au=Herrero+A+and+Flores+E+%28editor%29.&amp;rft.edition=1st+ed.&amp;rft.pub=Caister+Academic+Press&amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fcyan"><font size="3"> </font><br />
 
     </span></li>
 
     </span></li>
 
</ol>
 
</ol>
 +
<p><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Cyanobacteria%3A+Molecular+Biology%2C+Genomics+and+Evolution&amp;rft.au=Herrero+A+and+Flores+E+%28editor%29.&amp;rft.edition=1st+ed.&amp;rft.pub=Caister+Academic+Press&amp;rft_id=http%3A%2F%2Fwww.horizonpress.com%2Fcyan"><font size="5"><br />
 +
Web links</font><br />
 +
[http://en.wikipedia.org/wiki/Genomics Wikipedia Genomics link]<br />
 +
[http://omics.org Omics.org]<br />
 +
[http://totalomics.com Totalomics.com]<br />
 +
</span></p>
 +
<p>[http://www.news-medical.net/health/What-is-Genomics.aspx What is Genomics? from News-Medical.net]</p>

Latest revision as of 03:16, 4 August 2013

What is genomics?

Genomics
is the omics study of genes of individual organisms, populations, and species.

It is also a paradigm of performing biological science that deviates from investigating single genes, their functions, and roles.

The main reason of an independent biological discipline is that it deals with very large sets of genetic information to automatically analyze information using interaction and network concepts.

Genomics inevitably employs high performance computing and bioinformatics technologies.

 

 

History of the field

Genomics was practically founded by Fred Sanger group in 1970s when they developed a gene sequencing technique and completed the first genomes; namely bacteriophage Φ-X174; (5,368 bp), the human mitochondrial genome, and lamda virus.

In 1972, Walter Fiers and his team at the Laboratory of Molecular Biology of the University of Ghent (Ghent, Belgium) were the first to determine the sequence of a gene: the gene for Bacteriophage MS2 coat protein.[1] In 1976, the team determined the complete nucleotide-sequence of bacteriophage MS2-RNA.[2] The first DNA-based genome to be sequenced in its entirety was that of bacteriophage Φ-X174; (5,368 bp), sequenced by Frederick Sanger in 1977[3]. The first free-living organism to be sequenced was that of Haemophilus influenzae (1.8 Mb) in 1995, and since then genomes are being sequenced at a rapid pace. A rough draft of the human genome was completed by Sanger centre and the Human Genome Project in early 2001.

As of September 2007, the complete sequence was known of about 1879 viruses [4], 577 bacterial species and roughly 23 eukaryote organisms, of which about half are fungi. [5] Most of the bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as Haemophilus influenzae. Of the other sequenced species, most were chosen because they were well-studied model organisms or promised to become good models. Yeast (Saccharomyces cerevisiae) has long been an important model organism for the eukaryotic cell, while the fruit fly Drosophila melanogaster has been a very important tool (notably in early pre-molecular genetics). The worm Caenorhabditis elegans is an often used simple model for multicellular organisms. The zebrafish Brachydanio rerio is used for many developmental studies on the molecular level and the flower Arabidopsis thaliana is a model organism for flowering plants. The Japanese pufferfish (Takifugu rubripes) and the spotted green pufferfish (Tetraodon nigroviridis) are interesting because of their small and compact genomes, containing very little non-coding DNA compared to most species. [6] [7] The mammals dog (Canis familiaris), [8] brown rat (Rattus norvegicus), mouse (Mus musculus), and chimpanzee (Pan troglodytes) are all important model animals in medical research.

 

Bacteriophage Genomics

Bacteriophages have played and continue to play a key role in bacterial genetics and molecular biology. Historically, they were used to define gene structure and gene regulation. Also the first genome to be sequenced was a bacteriophage. However, bacteriophage research did not lead the genomics revolution, which is clearly dominated by bacterial genomics. Only very recently has the study of bacteriophage genomes become prominent, thereby enabling researchers to understand the mechanisms underlying phage evolution. Bacteriophage genome sequences can be obtained through direct sequencing of isolated bacteriophages, but can also be derived as part of microbial genomes. Analysis of bacterial genomes has shown that a substantial amount of microbial DNA consists of prophage sequences and prophage-like elements. A detailed database mining of these sequences offers insights into the role of prophages in shaping the bacterial genome.[9]

 

Cyanobacteria Genomics

At present there are 24 cyanobacteria for which a total genome sequence is available. 15 of these cyanobacteria come from the marine environment. These are six ProchlorococcusSynechococcus strains, Trichodesmium erythraeum IMS101 and Crocosphaera watsonii [[WH8501. Several studies have demonstrated how these sequences could be used very successfully to infer important ecological and physiological characteristics of marine cyanobacteria. However, there are many more genome projects currently in progress, amongst those there are further Prochlorococcus and marine Synechococcus isolates, Acaryochloris and Prochloron, the N2-fixing filamentous cyanobacteria Nodularia spumigena, Lyngbya aestuarii and Lyngbya majuscula, as well as bacteriophages infecting marine cyanobaceria. Thus, the growing body of genome information can also be tapped in a more general way to address global problems by applying a comparative approach. Some new and exciting examples of progress in this field are the identification of genes for regulatory RNAs, insights into the evolutionary origin of photosynthesis, or estimation of the contribution of horizontal gene transfer to the genomes that have been analyzed.[10]

Genome sequencing and genomics

See also

 

References

  1. ^ Min Jou W, Haegeman G, Ysebaert M, Fiers W., Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein, Nature. 1972 May 12;237(5350):82-8
  2. ^ Fiers W et al., Complete nucleotide-sequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene, Nature, 260, 500-507, 1976
  3. ^ Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M., Nucleotide sequence of bacteriophage phi X174 DNA, Nature. 1977 Feb 24;265(5596):687-95
  4. ^ The Viral Genomes Resource, NCBI Friday, 14 September, 2007
  5. ^ Genome Project Statistic, NCBI Friday, 14 September, 2007
  6. ^ BBC article Human gene number slashed from Wednesday, 20 October, 2004
  7. ^ CBSE News, Thursday October 16, 2003
  8. ^ NHGRI, pressrelease of the publishing of the dog genome
  9. ^ Mc Grath S and van Sinderen D (editors). (2007). Bacteriophage: Genetics and Molecular Biology, 1st ed., Caister Academic Press. ISBN 978-1-904455-14-1 . 
  10. ^ Herrero A and Flores E (editor). (2008). The Cyanobacteria: Molecular Biology, Genomics and Evolution, 1st ed., Caister Academic Press. ISBN 978-1-904455-15-8 .


Web links

Wikipedia Genomics link
Omics.org
Totalomics.com

What is Genomics? from News-Medical.net