Difference between revisions of "What is genomics"

From PGI

Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
<p><b>Genomics</b> is a discipline in [[omics]] concerning the study of the genomes of organisms.</p>
+
<p><span style="font-size: medium;"><b>Genomics</b> is a discipline in [[omics]] concerning the study of the genomes and associated omes of organisms.</span></p>
<p>The field includes intensive efforts to determine the entire <a class="mw-redirect" title="DNA sequence" href="http://en.wikipedia.org/wiki/DNA_sequence">DNA sequence</a> of organisms and fine-scale <a class="mw-redirect" title="Genetic mapping" href="http://en.wikipedia.org/wiki/Genetic_mapping">genetic mapping</a> efforts. The field also includes studies of intragenomic phenomena such as heterosis, epistasis, <a title="Pleiotropy" href="http://en.wikipedia.org/wiki/Pleiotropy">pleiotropy</a>  and other interactions between loci and alleles within the genome. In  contrast, the investigation of the roles and functions of single genes  is a primary focus of <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a> or <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics">genetics</a>  and is a common topic of modern medical and biological research. Research of single genes does not fall into the definition of genomics  unless the aim of this genetic, pathway, and functional information  analysis is to elucidate its effect on, place in, and response to the  entire genome's networks.</p>
+
<p><span style="font-size: medium;">The field includes efforts to determine the entire </span><a class="mw-redirect" title="DNA sequence" href="http://en.wikipedia.org/wiki/DNA_sequence"><span style="font-size: medium;">DNA sequence</span></a><span style="font-size: medium;"> of organisms and fine-scale </span><a class="mw-redirect" title="Genetic mapping" href="http://en.wikipedia.org/wiki/Genetic_mapping"><span style="font-size: medium;">genetic mapping</span></a><span style="font-size: medium;"> efforts. </span></p>
<p>For the <a title="United States Environmental Protection Agency" href="http://en.wikipedia.org/wiki/United_States_Environmental_Protection_Agency">United States Environmental Protection Agency</a>,  &quot;the term &quot;genomics&quot; encompasses a broader scope of scientific inquiry  associated technologies than when genomics was initially considered. A  genome is the sum total of all an individual organism's genes. Thus,  genomics is the study of all the genes of a cell, or tissue, at the DNA  (genotype), mRNA (transcriptome), or protein (proteome) levels.&quot;<sup class="reference" id="cite_ref-0"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-0"><span>[</span>1<span>]</span></a></sup></p>
+
<p><span style="font-size: medium;">The field also includes studies of intragenomic phenomena such as heterosis, epistasis, </span><a title="Pleiotropy" href="http://en.wikipedia.org/wiki/Pleiotropy"><span style="font-size: medium;">pleiotropy</span></a><span style="font-size: medium;">  and other interactions between loci and alleles within the genome. In  contrast, the investigation of the roles and functions of single genes  is a primary focus of </span><a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology"><span style="font-size: medium;">molecular biology</span></a><span style="font-size: medium;"> or </span><a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics"><span style="font-size: medium;">genetics</span></a><span style="font-size: medium;">  and is a common topic of modern medical and biological research. </span></p>
 +
<p><span style="font-size: medium;"> Research of single genes does not fall into the definition of genomics  unless the aim of this genetic, pathway, and functional information  analysis is to elucidate its effect on, place in, and response to the  entire genome's networks.</span></p>
 +
<p><span style="font-size: medium;">For the </span><a title="United States Environmental Protection Agency" href="http://en.wikipedia.org/wiki/United_States_Environmental_Protection_Agency"><span style="font-size: medium;">United States Environmental Protection Agency</span></a><span style="font-size: medium;">,  &quot;the term &quot;genomics&quot; encompasses a broader scope of scientific inquiry  associated technologies than when genomics was initially considered. A  genome is the sum total of all an individual organism's genes. Thus,  genomics is the study of all the genes of a cell, or tissue, at the DNA  (genotype), mRNA (transcriptome), or protein (proteome) levels.&quot;</span><sup class="reference" id="cite_ref-0"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-0"><span style="font-size: medium;">[1]</span></a></sup></p>
 
<p><font class="Apple-style-span" size="3"><br />
 
<p><font class="Apple-style-span" size="3"><br />
 
</font></p>
 
</font></p>
 
<h2><span id="History" class="mw-headline">History</span></h2>
 
<h2><span id="History" class="mw-headline">History</span></h2>
<p>The first genomes to be sequenced were those of a <a title="Virus" href="http://en.wikipedia.org/wiki/Virus">virus</a> and a <a title="Mitochondrion" href="http://en.wikipedia.org/wiki/Mitochondrion">mitochondrion</a>, and were done by <a class="mw-redirect" title="Fred Sanger" href="http://en.wikipedia.org/wiki/Fred_Sanger">Fred Sanger</a>.  His group established techniques of sequencing, genome mapping, data  storage, and bioinformatic analyses in the 1970-1980s. A major branch of  genomics is still concerned with <a title="Sequencing" href="http://en.wikipedia.org/wiki/Sequencing">sequencing</a> the genomes of various organisms, but the knowledge of full genomes has created the possibility for the field of <a title="Functional genomics" href="http://en.wikipedia.org/wiki/Functional_genomics">functional genomics</a>, mainly concerned with patterns of <a title="Gene expression" href="http://en.wikipedia.org/wiki/Gene_expression">gene expression</a> during various conditions. The most important tools here are <a title="Microarray" href="http://en.wikipedia.org/wiki/Microarray">microarrays</a> and <a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics">bioinformatics</a>. Study of the full set of proteins in a cell type or tissue, and the changes during various conditions, is called <a title="Proteomics" href="http://en.wikipedia.org/wiki/Proteomics">proteomics</a>. A related concept is <a title="Materiomics" href="http://en.wikipedia.org/wiki/Materiomics">materiomics</a>,  which is defined as the study of the material properties of biological  materials (e.g. hierarchical protein structures and materials,  mineralized biological tissues, etc.) and their effect on the  macroscopic function and failure in their biological context, linking  processes, structure and properties at multiple scales through a  materials science approach. The actual term 'genomics' is thought to  have been coined by Dr. Tom Roderick, a geneticist at the Jackson  Laboratory (Bar Harbor, ME) over beer at a meeting held in Maryland on  the mapping of the human genome in 1986.</p>
+
<p><span style="font-size: medium;">The first genomes to be sequenced were those of a </span><a title="Virus" href="http://en.wikipedia.org/wiki/Virus"><span style="font-size: medium;">virus</span></a><span style="font-size: medium;"> and a </span><a title="Mitochondrion" href="http://en.wikipedia.org/wiki/Mitochondrion"><span style="font-size: medium;">mitochondrion</span></a><span style="font-size: medium;">, and were done by </span><a class="mw-redirect" title="Fred Sanger" href="http://en.wikipedia.org/wiki/Fred_Sanger"><span style="font-size: medium;">Fred Sanger</span></a><span style="font-size: medium;">.  His group established techniques of sequencing, genome mapping, data  storage, and bioinformatic analyses in the 1970-1980s. A major branch of  genomics is still concerned with </span><a title="Sequencing" href="http://en.wikipedia.org/wiki/Sequencing"><span style="font-size: medium;">sequencing</span></a><span style="font-size: medium;"> the genomes of various organisms, but the knowledge of full genomes has created the possibility for the field of </span><a title="Functional genomics" href="http://en.wikipedia.org/wiki/Functional_genomics"><span style="font-size: medium;">functional genomics</span></a><span style="font-size: medium;">, mainly concerned with patterns of </span><a title="Gene expression" href="http://en.wikipedia.org/wiki/Gene_expression"><span style="font-size: medium;">gene expression</span></a><span style="font-size: medium;"> during various conditions. The most important tools here are </span><a title="Microarray" href="http://en.wikipedia.org/wiki/Microarray"><span style="font-size: medium;">microarrays</span></a><span style="font-size: medium;"> and </span><a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics"><span style="font-size: medium;">bioinformatics</span></a><span style="font-size: medium;">. Study of the full set of proteins in a cell type or tissue, and the changes during various conditions, is called </span><a title="Proteomics" href="http://en.wikipedia.org/wiki/Proteomics"><span style="font-size: medium;">proteomics</span></a><span style="font-size: medium;">. A related concept is </span><a title="Materiomics" href="http://en.wikipedia.org/wiki/Materiomics"><span style="font-size: medium;">materiomics</span></a><span style="font-size: medium;">,  which is defined as the study of the material properties of biological  materials (e.g. hierarchical protein structures and materials,  mineralized biological tissues, etc.) and their effect on the  macroscopic function and failure in their biological context, linking  processes, structure and properties at multiple scales through a  materials science approach. The actual term 'genomics' is thought to  have been coined by Dr. Tom Roderick, a geneticist at the Jackson  Laboratory (Bar Harbor, ME) over beer at a meeting held in Maryland on  the mapping of the human genome in 1986.</span></p>
<p>In 1972, <a title="Walter Fiers" href="http://en.wikipedia.org/wiki/Walter_Fiers">Walter Fiers</a> and his team at the Laboratory of Molecular Biology of the <a class="mw-redirect" title="University of Ghent" href="http://en.wikipedia.org/wiki/University_of_Ghent">University of Ghent</a> (<a title="Ghent" href="http://en.wikipedia.org/wiki/Ghent">Ghent</a>, <a title="Belgium" href="http://en.wikipedia.org/wiki/Belgium">Belgium</a>) were the first to determine the sequence of a gene: the gene for <a title="Bacteriophage MS2" href="http://en.wikipedia.org/wiki/Bacteriophage_MS2">Bacteriophage MS2</a> coat protein.<sup class="reference" id="cite_ref-1"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-1"><span>[</span>2<span>]</span></a></sup> In 1976, the team determined the complete nucleotide-sequence of bacteriophage MS2-RNA.<sup class="reference" id="cite_ref-2"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-2"><span>[</span>3<span>]</span></a></sup> The first DNA-based genome to be sequenced in its entirety was that of <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">bacteriophage</a> <a class="mw-redirect" title="Phi-X174 phage" href="http://en.wikipedia.org/wiki/Phi-X174_phage">&Phi;-X174;</a> (5,368 <a title="Base pair" href="http://en.wikipedia.org/wiki/Base_pair">bp</a>), sequenced by <a title="Frederick Sanger" href="http://en.wikipedia.org/wiki/Frederick_Sanger">Frederick Sanger</a> in 1977.<sup class="reference" id="cite_ref-3"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-3"><span>[</span>4<span>]</span></a></sup></p>
+
<p><span style="font-size: medium;">In 1972, </span><a title="Walter Fiers" href="http://en.wikipedia.org/wiki/Walter_Fiers"><span style="font-size: medium;">Walter Fiers</span></a><span style="font-size: medium;"> and his team at the Laboratory of Molecular Biology of the </span><a class="mw-redirect" title="University of Ghent" href="http://en.wikipedia.org/wiki/University_of_Ghent"><span style="font-size: medium;">University of Ghent</span></a><span style="font-size: medium;"> (</span><a title="Ghent" href="http://en.wikipedia.org/wiki/Ghent"><span style="font-size: medium;">Ghent</span></a><span style="font-size: medium;">, </span><a title="Belgium" href="http://en.wikipedia.org/wiki/Belgium"><span style="font-size: medium;">Belgium</span></a><span style="font-size: medium;">) were the first to determine the sequence of a gene: the gene for </span><a title="Bacteriophage MS2" href="http://en.wikipedia.org/wiki/Bacteriophage_MS2"><span style="font-size: medium;">Bacteriophage MS2</span></a><span style="font-size: medium;"> coat protein.</span><sup class="reference" id="cite_ref-1"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-1"><span style="font-size: medium;">[2]</span></a></sup><span style="font-size: medium;"> In 1976, the team determined the complete nucleotide-sequence of bacteriophage MS2-RNA.</span><sup class="reference" id="cite_ref-2"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-2"><span style="font-size: medium;">[3]</span></a></sup><span style="font-size: medium;"> The first DNA-based genome to be sequenced in its entirety was that of </span><a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage"><span style="font-size: medium;">bacteriophage</span></a><a class="mw-redirect" title="Phi-X174 phage" href="http://en.wikipedia.org/wiki/Phi-X174_phage"><span style="font-size: medium;">&Phi;-X174;</span></a><span style="font-size: medium;"> (5,368 </span><a title="Base pair" href="http://en.wikipedia.org/wiki/Base_pair"><span style="font-size: medium;">bp</span></a><span style="font-size: medium;">), sequenced by </span><a title="Frederick Sanger" href="http://en.wikipedia.org/wiki/Frederick_Sanger"><span style="font-size: medium;">Frederick Sanger</span></a><span style="font-size: medium;"> in 1977.</span><sup class="reference" id="cite_ref-3"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-3"><span style="font-size: medium;">[4]</span></a></sup></p>
<p>The first free-living organism to be sequenced was that of <i><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae">Haemophilus influenzae</a></i> (1.8 <a title="Base pair" href="http://en.wikipedia.org/wiki/Base_pair">Mb</a>) in 1995<sup class="reference" id="cite_ref-4"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-4"><span>[</span>5<span>]</span></a></sup>, and since then genomes are being sequenced at a rapid pace.</p>
+
<p><span style="font-size: medium;">The first free-living organism to be sequenced was that of </span><i><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae"><span style="font-size: medium;">Haemophilus influenzae</span></a></i><span style="font-size: medium;"> (1.8 </span><a title="Base pair" href="http://en.wikipedia.org/wiki/Base_pair"><span style="font-size: medium;">Mb</span></a><span style="font-size: medium;">) in 1995</span><sup class="reference" id="cite_ref-4"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-4"><span style="font-size: medium;">[5]</span></a></sup><span style="font-size: medium;">, and since then genomes are being sequenced at a rapid pace.</span></p>
<p>As of September 2007, the complete sequence was known of about 1879 <a title="Virus" href="http://en.wikipedia.org/wiki/Virus">viruses</a>,<sup class="reference" id="cite_ref-5"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-5"><span>[</span>6<span>]</span></a></sup> 577 <a title="Bacteria" href="http://en.wikipedia.org/wiki/Bacteria">bacterial</a> species and roughly 23 <a title="Eukaryote" href="http://en.wikipedia.org/wiki/Eukaryote">eukaryote</a> organisms, of which about half are <a class="mw-redirect" title="Fungi" href="http://en.wikipedia.org/wiki/Fungi">fungi</a>. <sup class="reference" id="cite_ref-6"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-6"><span>[</span>7<span>]</span></a></sup> Most of the bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as <i><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae">Haemophilus influenzae</a></i>.  Of the other sequenced species, most were chosen because they were  well-studied model organisms or promised to become good models. Yeast (<i><a title="Saccharomyces cerevisiae" href="http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae">Saccharomyces cerevisiae</a></i>) has long been an important <a title="Model organism" href="http://en.wikipedia.org/wiki/Model_organism">model organism</a> for the <a class="mw-redirect" title="Eukaryotic cell" href="http://en.wikipedia.org/wiki/Eukaryotic_cell">eukaryotic cell</a>, while the fruit fly <i><a title="Drosophila melanogaster" href="http://en.wikipedia.org/wiki/Drosophila_melanogaster">Drosophila melanogaster</a></i> has been a very important tool (notably in early pre-molecular <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics">genetics</a>). The worm <i><a title="Caenorhabditis elegans" href="http://en.wikipedia.org/wiki/Caenorhabditis_elegans">Caenorhabditis elegans</a></i> is an often used simple model for <a title="Multicellular organism" href="http://en.wikipedia.org/wiki/Multicellular_organism">multicellular organisms</a>. The zebrafish <i><a class="mw-redirect" title="Brachydanio rerio" href="http://en.wikipedia.org/wiki/Brachydanio_rerio">Brachydanio rerio</a></i> is used for many developmental studies on the molecular level and the flower <i><a title="Arabidopsis thaliana" href="http://en.wikipedia.org/wiki/Arabidopsis_thaliana">Arabidopsis thaliana</a></i> is a model organism for flowering plants. The <a class="mw-redirect" title="Japanese pufferfish" href="http://en.wikipedia.org/wiki/Japanese_pufferfish">Japanese pufferfish</a> (<i><a title="Takifugu rubripes" href="http://en.wikipedia.org/wiki/Takifugu_rubripes">Takifugu rubripes</a></i>) and the <a class="mw-redirect" title="Spotted green pufferfish" href="http://en.wikipedia.org/wiki/Spotted_green_pufferfish">spotted green pufferfish</a> (<i><a title="Tetraodon nigroviridis" href="http://en.wikipedia.org/wiki/Tetraodon_nigroviridis">Tetraodon nigroviridis</a></i>) are interesting because of their small and compact genomes, containing very little non-coding DNA compared to most species. <sup class="reference" id="cite_ref-7"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-7"><span>[</span>8<span>]</span></a></sup> <sup class="reference" id="cite_ref-8"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-8"><span>[</span>9<span>]</span></a></sup> The mammals dog (<i><a class="mw-redirect" title="Canis familiaris" href="http://en.wikipedia.org/wiki/Canis_familiaris">Canis familiaris</a></i>), <sup class="reference" id="cite_ref-9"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-9"><span>[</span>10<span>]</span></a></sup> brown rat (<i><a class="mw-redirect" title="Rattus norvegicus" href="http://en.wikipedia.org/wiki/Rattus_norvegicus">Rattus norvegicus</a></i>), mouse (<i><a class="mw-redirect" title="Mus musculus" href="http://en.wikipedia.org/wiki/Mus_musculus">Mus musculus</a></i>), and chimpanzee (<i><a class="mw-redirect" title="Pan troglodytes" href="http://en.wikipedia.org/wiki/Pan_troglodytes">Pan troglodytes</a></i>) are all important model animals in medical research.</p>
+
<p><span style="font-size: medium;">As of September 2007, the complete sequence was known of about 1879 </span><a title="Virus" href="http://en.wikipedia.org/wiki/Virus"><span style="font-size: medium;">viruses</span></a><span style="font-size: medium;">,</span><sup class="reference" id="cite_ref-5"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-5"><span style="font-size: medium;">[6]</span></a></sup><span style="font-size: medium;"> 577 </span><a title="Bacteria" href="http://en.wikipedia.org/wiki/Bacteria"><span style="font-size: medium;">bacterial</span></a><span style="font-size: medium;"> species and roughly 23 </span><a title="Eukaryote" href="http://en.wikipedia.org/wiki/Eukaryote"><span style="font-size: medium;">eukaryote</span></a><span style="font-size: medium;"> organisms, of which about half are </span><a class="mw-redirect" title="Fungi" href="http://en.wikipedia.org/wiki/Fungi"><span style="font-size: medium;">fungi</span></a><span style="font-size: medium;">. </span><sup class="reference" id="cite_ref-6"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-6"><span style="font-size: medium;">[7]</span></a></sup><span style="font-size: medium;"> Most of the bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as </span><i><a title="Haemophilus influenzae" href="http://en.wikipedia.org/wiki/Haemophilus_influenzae"><span style="font-size: medium;">Haemophilus influenzae</span></a></i><span style="font-size: medium;">.  Of the other sequenced species, most were chosen because they were  well-studied model organisms or promised to become good models. Yeast (</span><i><a title="Saccharomyces cerevisiae" href="http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae"><span style="font-size: medium;">Saccharomyces cerevisiae</span></a></i><span style="font-size: medium;">) has long been an important </span><a title="Model organism" href="http://en.wikipedia.org/wiki/Model_organism"><span style="font-size: medium;">model organism</span></a><span style="font-size: medium;"> for the </span><a class="mw-redirect" title="Eukaryotic cell" href="http://en.wikipedia.org/wiki/Eukaryotic_cell"><span style="font-size: medium;">eukaryotic cell</span></a><span style="font-size: medium;">, while the fruit fly </span><i><a title="Drosophila melanogaster" href="http://en.wikipedia.org/wiki/Drosophila_melanogaster"><span style="font-size: medium;">Drosophila melanogaster</span></a></i><span style="font-size: medium;"> has been a very important tool (notably in early pre-molecular </span><a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics"><span style="font-size: medium;">genetics</span></a><span style="font-size: medium;">). The worm </span><i><a title="Caenorhabditis elegans" href="http://en.wikipedia.org/wiki/Caenorhabditis_elegans"><span style="font-size: medium;">Caenorhabditis elegans</span></a></i><span style="font-size: medium;"> is an often used simple model for </span><a title="Multicellular organism" href="http://en.wikipedia.org/wiki/Multicellular_organism"><span style="font-size: medium;">multicellular organisms</span></a><span style="font-size: medium;">. The zebrafish </span><i><a class="mw-redirect" title="Brachydanio rerio" href="http://en.wikipedia.org/wiki/Brachydanio_rerio"><span style="font-size: medium;">Brachydanio rerio</span></a></i><span style="font-size: medium;"> is used for many developmental studies on the molecular level and the flower </span><i><a title="Arabidopsis thaliana" href="http://en.wikipedia.org/wiki/Arabidopsis_thaliana"><span style="font-size: medium;">Arabidopsis thaliana</span></a></i><span style="font-size: medium;"> is a model organism for flowering plants. The </span><a class="mw-redirect" title="Japanese pufferfish" href="http://en.wikipedia.org/wiki/Japanese_pufferfish"><span style="font-size: medium;">Japanese pufferfish</span></a><span style="font-size: medium;"> (</span><i><a title="Takifugu rubripes" href="http://en.wikipedia.org/wiki/Takifugu_rubripes"><span style="font-size: medium;">Takifugu rubripes</span></a></i><span style="font-size: medium;">) and the </span><a class="mw-redirect" title="Spotted green pufferfish" href="http://en.wikipedia.org/wiki/Spotted_green_pufferfish"><span style="font-size: medium;">spotted green pufferfish</span></a><span style="font-size: medium;"> (</span><i><a title="Tetraodon nigroviridis" href="http://en.wikipedia.org/wiki/Tetraodon_nigroviridis"><span style="font-size: medium;">Tetraodon nigroviridis</span></a></i><span style="font-size: medium;">) are interesting because of their small and compact genomes, containing very little non-coding DNA compared to most species. </span><sup class="reference" id="cite_ref-7"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-7"><span style="font-size: medium;">[8]</span></a></sup><sup class="reference" id="cite_ref-8"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-8"><span style="font-size: medium;">[9]</span></a></sup><span style="font-size: medium;"> The mammals dog (</span><i><a class="mw-redirect" title="Canis familiaris" href="http://en.wikipedia.org/wiki/Canis_familiaris"><span style="font-size: medium;">Canis familiaris</span></a></i><span style="font-size: medium;">), </span><sup class="reference" id="cite_ref-9"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-9"><span style="font-size: medium;">[10]</span></a></sup><span style="font-size: medium;"> brown rat (</span><i><a class="mw-redirect" title="Rattus norvegicus" href="http://en.wikipedia.org/wiki/Rattus_norvegicus"><span style="font-size: medium;">Rattus norvegicus</span></a></i><span style="font-size: medium;">), mouse (</span><i><a class="mw-redirect" title="Mus musculus" href="http://en.wikipedia.org/wiki/Mus_musculus"><span style="font-size: medium;">Mus musculus</span></a></i><span style="font-size: medium;">), and chimpanzee (</span><i><a class="mw-redirect" title="Pan troglodytes" href="http://en.wikipedia.org/wiki/Pan_troglodytes"><span style="font-size: medium;">Pan troglodytes</span></a></i><span style="font-size: medium;">) are all important model animals in medical research.</span></p>
 +
<p>&nbsp;</p>
 
<h2><span id="Human_genomics" class="mw-headline">Human genomics</span></h2>
 
<h2><span id="Human_genomics" class="mw-headline">Human genomics</span></h2>
<p>A rough draft of the human genome was completed by the <a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project">Human Genome Project</a>  in early 2001, creating much fanfare. By 2007 the human sequence was  declared &quot;finished&quot; (less than one error in 20,000 bases and all  chromosomes assembled). Display of the results of the project required  significant <a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics">bioinformatics</a> resources. The sequence of the human <a class="mw-redirect" title="Reference assembly" href="http://en.wikipedia.org/wiki/Reference_assembly">reference assembly</a> can be explored using the <a title="UCSC Genome Browser" href="http://en.wikipedia.org/wiki/UCSC_Genome_Browser">UCSC Genome Browser</a> or <a title="Ensembl" href="http://en.wikipedia.org/wiki/Ensembl">Ensembl</a>.</p>
+
<p><span style="font-size: medium;">A rough draft of the human genome was completed by the </span><a title="Human Genome Project" href="http://en.wikipedia.org/wiki/Human_Genome_Project"><span style="font-size: medium;">Human Genome Project</span></a><span style="font-size: medium;">  in early 2001, creating much fanfare. By 2007 the human sequence was  declared &quot;finished&quot; (less than one error in 20,000 bases and all  chromosomes assembled). Display of the results of the project required  significant </span><a title="Bioinformatics" href="http://en.wikipedia.org/wiki/Bioinformatics"><span style="font-size: medium;">bioinformatics</span></a><span style="font-size: medium;"> resources. The sequence of the human </span><a class="mw-redirect" title="Reference assembly" href="http://en.wikipedia.org/wiki/Reference_assembly"><span style="font-size: medium;">reference assembly</span></a><span style="font-size: medium;"> can be explored using the </span><a title="UCSC Genome Browser" href="http://en.wikipedia.org/wiki/UCSC_Genome_Browser"><span style="font-size: medium;">UCSC Genome Browser</span></a><span style="font-size: medium;"> or </span><a title="Ensembl" href="http://en.wikipedia.org/wiki/Ensembl"><span style="font-size: medium;">Ensembl</span></a><span style="font-size: medium;">.</span></p>
 +
<p>&nbsp;</p>
 
<h2><span id="Bacteriophage_genomics" class="mw-headline">Bacteriophage genomics</span></h2>
 
<h2><span id="Bacteriophage_genomics" class="mw-headline">Bacteriophage genomics</span></h2>
<p><a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">Bacteriophages</a> have played and continue to play a key role in bacterial <a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics">genetics</a> and <a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology">molecular biology</a>. Historically, they were used to define <a title="Gene" href="http://en.wikipedia.org/wiki/Gene">gene</a> structure and gene regulation. Also the first <a title="Genome" href="http://en.wikipedia.org/wiki/Genome">genome</a> to be sequenced was a <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">bacteriophage</a>.  However, bacteriophage research did not lead the genomics revolution,  which is clearly dominated by bacterial genomics. Only very recently has  the study of bacteriophage genomes become prominent, thereby enabling  researchers to understand the mechanisms underlying <a class="mw-redirect" title="Phage" href="http://en.wikipedia.org/wiki/Phage">phage</a>  evolution. Bacteriophage genome sequences can be obtained through  direct sequencing of isolated bacteriophages, but can also be derived as  part of microbial genomes. Analysis of bacterial genomes has shown that  a substantial amount of microbial DNA consists of <a title="Prophage" href="http://en.wikipedia.org/wiki/Prophage">prophage</a>  sequences and prophage-like elements. A detailed database mining of  these sequences offers insights into the role of prophages in shaping  the bacterial genome.<sup class="reference" id="cite_ref-McGrath_10-0"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-McGrath-10"><span>[</span>11<span>]</span></a></sup></p>
+
<p><a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage"><span style="font-size: medium;">Bacteriophages</span></a><span style="font-size: medium;"> have played and continue to play a key role in bacterial </span><a title="Genetics" href="http://en.wikipedia.org/wiki/Genetics"><span style="font-size: medium;">genetics</span></a><span style="font-size: medium;"> and </span><a title="Molecular biology" href="http://en.wikipedia.org/wiki/Molecular_biology"><span style="font-size: medium;">molecular biology</span></a><span style="font-size: medium;">. Historically, they were used to define </span><a title="Gene" href="http://en.wikipedia.org/wiki/Gene"><span style="font-size: medium;">gene</span></a><span style="font-size: medium;"> structure and gene regulation. Also the first </span><a title="Genome" href="http://en.wikipedia.org/wiki/Genome"><span style="font-size: medium;">genome</span></a><span style="font-size: medium;"> to be sequenced was a </span><a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage"><span style="font-size: medium;">bacteriophage</span></a><span style="font-size: medium;">.  However, bacteriophage research did not lead the genomics revolution,  which is clearly dominated by bacterial genomics. Only very recently has  the study of bacteriophage genomes become prominent, thereby enabling  researchers to understand the mechanisms underlying </span><a class="mw-redirect" title="Phage" href="http://en.wikipedia.org/wiki/Phage"><span style="font-size: medium;">phage</span></a><span style="font-size: medium;">  evolution. Bacteriophage genome sequences can be obtained through  direct sequencing of isolated bacteriophages, but can also be derived as  part of microbial genomes. Analysis of bacterial genomes has shown that  a substantial amount of microbial DNA consists of </span><a title="Prophage" href="http://en.wikipedia.org/wiki/Prophage"><span style="font-size: medium;">prophage</span></a><span style="font-size: medium;">  sequences and prophage-like elements. A detailed database mining of  these sequences offers insights into the role of prophages in shaping  the bacterial genome.</span><sup class="reference" id="cite_ref-McGrath_10-0"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-McGrath-10"><span style="font-size: medium;">[11]</span></a></sup></p>
<h2><span id="Cyanobacteria_genomics" class="mw-headline">Cyanobacteria genomics</span></h2>
+
<p>&nbsp;</p>
<p>At present there are 24 <a title="Cyanobacteria" href="http://en.wikipedia.org/wiki/Cyanobacteria">cyanobacteria</a> for which a total genome sequence is available. 15 of these cyanobacteria come from the marine environment. These are six <i><a title="Prochlorococcus" href="http://en.wikipedia.org/wiki/Prochlorococcus">Prochlorococcus</a></i> strains, seven marine <i><a title="Synechococcus" href="http://en.wikipedia.org/wiki/Synechococcus">Synechococcus</a></i> strains, <i><a title="Trichodesmium erythraeum (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Trichodesmium_erythraeum&amp;action=edit&amp;redlink=1">Trichodesmium erythraeum</a></i> IMS101 and <i><a title="Crocosphaera watsonii (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Crocosphaera_watsonii&amp;action=edit&amp;redlink=1">Crocosphaera watsonii</a></i> <a title="WH8501 (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=WH8501&amp;action=edit&amp;redlink=1">WH8501</a>Several studies have demonstrated how these sequences could be used  very successfully to infer important ecological and physiological  characteristics of marine cyanobacteria. However, there are many more  genome projects currently in progress, amongst those there are further <i><a title="Prochlorococcus" href="http://en.wikipedia.org/wiki/Prochlorococcus">Prochlorococcus</a></i> and marine <i><a title="Synechococcus" href="http://en.wikipedia.org/wiki/Synechococcus">Synechococcus</a></i> isolates, <i><a title="Acaryochloris (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Acaryochloris&amp;action=edit&amp;redlink=1">Acaryochloris</a></i> and <i><a title="Prochloron" href="http://en.wikipedia.org/wiki/Prochloron">Prochloron</a></i>, the N<sub>2</sub>-fixing filamentous cyanobacteria <i><a title="Nodularia spumigena (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Nodularia_spumigena&amp;action=edit&amp;redlink=1">Nodularia spumigena</a></i>, <i><a title="Lyngbya aestuarii (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Lyngbya_aestuarii&amp;action=edit&amp;redlink=1">Lyngbya aestuarii</a></i> and <i><a title="Lyngbya majuscula" href="http://en.wikipedia.org/wiki/Lyngbya_majuscula">Lyngbya majuscula</a></i>, as well as <a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage">bacteriophages</a> infecting marine cyanobaceria. Thus, the growing body of genome  information can also be tapped in a more general way to address global  problems by applying a comparative approach. Some new and exciting  examples of progress in this field are the identification of genes for  regulatory RNAs, insights into the evolutionary origin of <a title="Photosynthesis" href="http://en.wikipedia.org/wiki/Photosynthesis">photosynthesis</a>, or estimation of the contribution of horizontal gene transfer to the genomes that have been analyzed.<sup class="reference" id="cite_ref-Herrero_11-0"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-Herrero-11"><span>[</span>12<span>]</span></a></sup></p>
+
<h2><span style="font-size: large;"><span id="Cyanobacteria_genomics" class="mw-headline">Cyanobacteria genomics</span></span></h2>
<h2><span id="See_also" class="mw-headline">See also</span></h2>
+
<p><span style="font-size: medium;">At present there are 24 </span><a title="Cyanobacteria" href="http://en.wikipedia.org/wiki/Cyanobacteria"><span style="font-size: medium;">cyanobacteria</span></a><span style="font-size: medium;"> for which a total genome sequence is available. 15 of these cyanobacteria come from the marine environment. These are six </span><i><a title="Prochlorococcus" href="http://en.wikipedia.org/wiki/Prochlorococcus"><span style="font-size: medium;">Prochlorococcus</span></a></i><span style="font-size: medium;"> strains, seven marine </span><i><a title="Synechococcus" href="http://en.wikipedia.org/wiki/Synechococcus"><span style="font-size: medium;">Synechococcus</span></a></i><span style="font-size: medium;"> strains, </span><i><a title="Trichodesmium erythraeum (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Trichodesmium_erythraeum&amp;action=edit&amp;redlink=1"><span style="font-size: medium;">Trichodesmium erythraeum</span></a></i><span style="font-size: medium;"> IMS101 and </span><i><a title="Crocosphaera watsonii (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Crocosphaera_watsonii&amp;action=edit&amp;redlink=1"><span style="font-size: medium;">Crocosphaera watsonii</span></a></i><a title="WH8501 (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=WH8501&amp;action=edit&amp;redlink=1"><span style="font-size: medium;">WH8501</span></a><span style="font-size: medium;">.  Several studies have demonstrated how these sequences could be used  very successfully to infer important ecological and physiological  characteristics of marine cyanobacteria. However, there are many more  genome projects currently in progress, amongst those there are further </span><i><a title="Prochlorococcus" href="http://en.wikipedia.org/wiki/Prochlorococcus"><span style="font-size: medium;">Prochlorococcus</span></a></i><span style="font-size: medium;"> and marine </span><i><a title="Synechococcus" href="http://en.wikipedia.org/wiki/Synechococcus"><span style="font-size: medium;">Synechococcus</span></a></i><span style="font-size: medium;"> isolates, </span><i><a title="Acaryochloris (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Acaryochloris&amp;action=edit&amp;redlink=1"><span style="font-size: medium;">Acaryochloris</span></a></i><span style="font-size: medium;"> and </span><i><a title="Prochloron" href="http://en.wikipedia.org/wiki/Prochloron"><span style="font-size: medium;">Prochloron</span></a></i><span style="font-size: medium;">, the N<sub>2</sub>-fixing filamentous cyanobacteria </span><i><a title="Nodularia spumigena (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Nodularia_spumigena&amp;action=edit&amp;redlink=1"><span style="font-size: medium;">Nodularia spumigena</span></a></i><span style="font-size: medium;">, </span><i><a title="Lyngbya aestuarii (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Lyngbya_aestuarii&amp;action=edit&amp;redlink=1"><span style="font-size: medium;">Lyngbya aestuarii</span></a></i><span style="font-size: medium;"> and </span><i><a title="Lyngbya majuscula" href="http://en.wikipedia.org/wiki/Lyngbya_majuscula"><span style="font-size: medium;">Lyngbya majuscula</span></a></i><span style="font-size: medium;">, as well as </span><a title="Bacteriophage" href="http://en.wikipedia.org/wiki/Bacteriophage"><span style="font-size: medium;">bacteriophages</span></a><span style="font-size: medium;">  infecting marine cyanobaceria. Thus, the growing body of genome  information can also be tapped in a more general way to address global  problems by applying a comparative approach. Some new and exciting  examples of progress in this field are the identification of genes for  regulatory RNAs, insights into the evolutionary origin of </span><a title="Photosynthesis" href="http://en.wikipedia.org/wiki/Photosynthesis"><span style="font-size: medium;">photosynthesis</span></a><span style="font-size: medium;">, or estimation of the contribution of horizontal gene transfer to the genomes that have been analyzed.</span><sup class="reference" id="cite_ref-Herrero_11-0"><a href="http://en.wikipedia.org/wiki/Genomics#cite_note-Herrero-11"><span style="font-size: medium;">[12]</span></a></sup></p>
 +
<p><span style="font-size: medium;">&nbsp;</span></p>
 +
<h2><span style="font-size: large;"><span id="See_also" class="mw-headline">See also</span></span></h2>
 
<ul>
 
<ul>
     <li><a class="mw-redirect" title="Full Genome Sequencing" href="http://en.wikipedia.org/wiki/Full_Genome_Sequencing">Full Genome Sequencing</a></li>
+
     <li><a class="mw-redirect" title="Full Genome Sequencing" href="http://en.wikipedia.org/wiki/Full_Genome_Sequencing"><span style="font-size: medium;">Full Genome Sequencing</span></a></li>
     <li><a title="Computational genomics" href="http://en.wikipedia.org/wiki/Computational_genomics">Computational genomics</a></li>
+
     <li><a title="Computational genomics" href="http://en.wikipedia.org/wiki/Computational_genomics"><span style="font-size: medium;">Computational genomics</span></a></li>
     <li><a title="Nitrogenomics (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Nitrogenomics&amp;action=edit&amp;redlink=1">Nitrogenomics</a></li>
+
     <li><a title="Nitrogenomics (page does not exist)" class="new" href="http://en.wikipedia.org/w/index.php?title=Nitrogenomics&amp;action=edit&amp;redlink=1"><span style="font-size: medium;">Nitrogenomics</span></a></li>
     <li><a title="Metagenomics" href="http://en.wikipedia.org/wiki/Metagenomics">Metagenomics</a></li>
+
     <li><a title="Metagenomics" href="http://en.wikipedia.org/wiki/Metagenomics"><span style="font-size: medium;">Metagenomics</span></a></li>
     <li><a class="mw-redirect" title="Predictive Medicine" href="http://en.wikipedia.org/wiki/Predictive_Medicine">Predictive Medicine</a></li>
+
     <li><a class="mw-redirect" title="Predictive Medicine" href="http://en.wikipedia.org/wiki/Predictive_Medicine"><span style="font-size: medium;">Predictive Medicine</span></a></li>
     <li><a title="Personal genomics" href="http://en.wikipedia.org/wiki/Personal_genomics">Personal genomics</a></li>
+
     <li><a title="Personal genomics" href="http://en.wikipedia.org/wiki/Personal_genomics"><span style="font-size: medium;">Personal genomics</span></a></li>
     <li><a class="mw-redirect" title="Psychogenomics" href="http://en.wikipedia.org/wiki/Psychogenomics">Psychogenomics</a></li>
+
     <li><a class="mw-redirect" title="Psychogenomics" href="http://en.wikipedia.org/wiki/Psychogenomics"><span style="font-size: medium;">Psychogenomics</span></a></li>
 
</ul>
 
</ul>
<h2><span id="References" class="mw-headline">References</span></h2>
+
<p><span style="font-size: medium;">&nbsp;</span></p>
 +
<h2><span style="font-size: large;"><span id="References" class="mw-headline">References</span></span></h2>
 
<div style="-moz-column-count: 2; -webkit-column-count: 2; column-count: 2; list-style-type: decimal;" class="reflist references-column-count references-column-count-2">
 
<div style="-moz-column-count: 2; -webkit-column-count: 2; column-count: 2; list-style-type: decimal;" class="reflist references-column-count references-column-count-2">
 
<ol class="references">
 
<ol class="references">
     <li id="cite_note-0"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-0">^</a></b> <a class="external text" rel="nofollow" href="http://epa.gov/osa/spc/pdfs/genomics.pdf">EPA Interim Genomics Policy</a></li>
+
     <li id="cite_note-0"><span style="font-size: small;"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-0">^</a></b></span><a class="external text" rel="nofollow" href="http://epa.gov/osa/spc/pdfs/genomics.pdf"><span style="font-size: small;">EPA Interim Genomics Policy</span></a></li>
     <li id="cite_note-1"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-1">^</a></b> <span class="citation Journal">Min  Jou W, Haegeman G, Ysebaert M, Fiers W (1972). &quot;Nucleotide sequence of  the gene coding for the bacteriophage MS2 coat protein&quot;. <i>Nature</i> <b>237</b> (5350): 82&ndash;88. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1038%2F237082a0">10.1038/237082a0</a>. <a class="mw-redirect" title="PubMed Identifier" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/4555447">4555447</a>.</span></li>
+
     <li id="cite_note-1"><span style="font-size: small;"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-1">^</a></b></span><span style="font-size: small;"> <span class="citation Journal">Min  Jou W, Haegeman G, Ysebaert M, Fiers W (1972). &quot;Nucleotide sequence of  the gene coding for the bacteriophage MS2 coat protein&quot;. <i>Nature</i> <b>237</b> (5350): 82&ndash;88. </span></span><span class="citation Journal"><a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier"><span style="font-size: small;">doi</span></a><span style="font-size: small;">:</span><a class="external text" rel="nofollow" href="http://dx.doi.org/10.1038%2F237082a0"><span style="font-size: small;">10.1038/237082a0</span></a><span style="font-size: small;">. </span><a class="mw-redirect" title="PubMed Identifier" href="http://en.wikipedia.org/wiki/PubMed_Identifier"><span style="font-size: small;">PMID</span></a><span style="font-size: small;">&nbsp;</span><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/4555447"><span style="font-size: small;">4555447</span></a></span><span style="font-size: small;"><span class="citation Journal">.</span></span></li>
    <li id="cite_note-2"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-2">^</a></b> <span class="citation Journal">Fiers  W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min  Jou W, Molemans F, Raeymaekers A, Van den Berghe A, Volckaert G,  Ysebaert M (1976). &quot;Complete nucleotide sequence of bacteriophage MS2  RNA: primary and secondary structure of the replicase gene&quot;. <i>Nature</i> <b>260</b> (5551): 500&ndash;507. <a title="Bibcode" href="http://en.wikipedia.org/wiki/Bibcode">Bibcode</a> <a class="external text" rel="nofollow" href="http://adsabs.harvard.edu/abs/1976Natur.260..500F">1976Natur.260..500F</a>. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1038%2F260500a0">10.1038/260500a0</a>. <a class="mw-redirect" title="PubMed Identifier" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/1264203">1264203</a>.</span></li>
+
    <li id="cite_note-2"><span style="font-size: small;"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-2">^</a></b></span><span style="font-size: small;"> <span class="citation Journal">Fiers  W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min  Jou W, Molemans F, Raeymaekers A, Van den Berghe A, Volckaert G,  Ysebaert M (1976). &quot;Complete nucleotide sequence of bacteriophage MS2  RNA: primary and secondary structure of the replicase gene&quot;. <i>Nature</i> <b>260</b> (5551): 500&ndash;507. </span></span><span class="citation Journal"><a title="Bibcode" href="http://en.wikipedia.org/wiki/Bibcode"><span style="font-size: small;">Bibcode</span></a><a class="external text" rel="nofollow" href="http://adsabs.harvard.edu/abs/1976Natur.260..500F"><span style="font-size: small;">1976Natur.260..500F</span></a><span style="font-size: small;">. </span><a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier"><span style="font-size: small;">doi</span></a><span style="font-size: small;">:</span><a class="external text" rel="nofollow" href="http://dx.doi.org/10.1038%2F260500a0"><span style="font-size: small;">10.1038/260500a0</span></a><span style="font-size: small;">. </span><a class="mw-redirect" title="PubMed Identifier" href="http://en.wikipedia.org/wiki/PubMed_Identifier"><span style="font-size: small;">PMID</span></a><span style="font-size: small;">&nbsp;</span><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/1264203"><span style="font-size: small;">1264203</span></a></span><span style="font-size: small;"><span class="citation Journal">.</span></span></li>
    <li id="cite_note-3"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-3">^</a></b> <span class="citation Journal">Sanger  F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA,  Slocombe PM, Smith M (1977). &quot;Nucleotide sequence of bacteriophage phi  X174 DNA&quot;. <i>Nature</i> <b>265</b> (5596): 687&ndash;695. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1038%2F265687a0">10.1038/265687a0</a>. <a class="mw-redirect" title="PubMed Identifier" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/870828">870828</a>.</span></li>
+
    <li id="cite_note-3"><span style="font-size: small;"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-3">^</a></b></span><span style="font-size: small;"> <span class="citation Journal">Sanger  F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA,  Slocombe PM, Smith M (1977). &quot;Nucleotide sequence of bacteriophage phi  X174 DNA&quot;. <i>Nature</i> <b>265</b> (5596): 687&ndash;695. </span></span><span class="citation Journal"><a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier"><span style="font-size: small;">doi</span></a><span style="font-size: small;">:</span><a class="external text" rel="nofollow" href="http://dx.doi.org/10.1038%2F265687a0"><span style="font-size: small;">10.1038/265687a0</span></a><span style="font-size: small;">. </span><a class="mw-redirect" title="PubMed Identifier" href="http://en.wikipedia.org/wiki/PubMed_Identifier"><span style="font-size: small;">PMID</span></a><span style="font-size: small;">&nbsp;</span><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/870828"><span style="font-size: small;">870828</span></a></span><span style="font-size: small;"><span class="citation Journal">.</span></span></li>
    <li id="cite_note-4"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-4">^</a></b> <span class="citation Journal">Fleischmann  RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ,  Tomb JF, Dougherty BA, Merrick JM, et al. (1995). &quot;Whole-genome random  sequencing and assembly of Haemophilus influenzae Rd&quot;. <i>Science</i> <b>269</b> (5223): 496&ndash;512. <a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier">doi</a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1126%2Fscience.7542800">10.1126/science.7542800</a>. <a class="mw-redirect" title="PubMed Identifier" href="http://en.wikipedia.org/wiki/PubMed_Identifier">PMID</a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/7542800">7542800</a>.</span></li>
+
    <li id="cite_note-4"><span style="font-size: small;"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-4">^</a></b></span><span style="font-size: small;"> <span class="citation Journal">Fleischmann  RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ,  Tomb JF, Dougherty BA, Merrick JM, et al. (1995). &quot;Whole-genome random  sequencing and assembly of Haemophilus influenzae Rd&quot;. <i>Science</i> <b>269</b> (5223): 496&ndash;512. </span></span><span class="citation Journal"><a title="Digital object identifier" href="http://en.wikipedia.org/wiki/Digital_object_identifier"><span style="font-size: small;">doi</span></a><span style="font-size: small;">:</span><a class="external text" rel="nofollow" href="http://dx.doi.org/10.1126%2Fscience.7542800"><span style="font-size: small;">10.1126/science.7542800</span></a><span style="font-size: small;">. </span><a class="mw-redirect" title="PubMed Identifier" href="http://en.wikipedia.org/wiki/PubMed_Identifier"><span style="font-size: small;">PMID</span></a><span style="font-size: small;">&nbsp;</span><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/7542800"><span style="font-size: small;">7542800</span></a></span><span style="font-size: small;"><span class="citation Journal">.</span></span></li>
    <li id="cite_note-5"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-5">^</a></b> <a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/virostat.html"><i>The Viral Genomes Resource</i>, NCBI Friday, 14 September 2007</a></li>
+
    <li id="cite_note-5"><span style="font-size: small;"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-5">^</a></b></span><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/virostat.html"><span style="font-size: small;"><i>The Viral Genomes Resource</i>, NCBI Friday, 14 September 2007</span></a></li>
    <li id="cite_note-6"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-6">^</a></b> <a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html"><i>Genome Project Statistic</i>, NCBI Friday, 14 September 2007</a></li>
+
    <li id="cite_note-6"><span style="font-size: small;"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-6">^</a></b></span><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html"><span style="font-size: small;"><i>Genome Project Statistic</i>, NCBI Friday, 14 September 2007</span></a></li>
    <li id="cite_note-7"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-7">^</a></b> <a class="external text" rel="nofollow" href="http://news.bbc.co.uk/1/hi/sci/tech/3760766.stm">BBC article <i>Human gene number slashed</i> from Wednesday, 20 October 2004</a></li>
+
     <li id="cite_note-7"><span style="font-size: small;"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-7">^</a></b></span><a class="external text" rel="nofollow" href="http://news.bbc.co.uk/1/hi/sci/tech/3760766.stm"><span style="font-size: small;">BBC article <i>Human gene number slashed</i> from Wednesday, 20 October 2004</span></a></li>
    <li id="cite_note-8"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-8">^</a></b> <a class="external text" rel="nofollow" href="http://www.cbse.ucsc.edu/news/2003/10/16/pufferfish_fruitfly/index.shtml">CBSE News, Thursday, 16 October 2003</a></li>
+
    <li id="cite_note-8"><span style="font-size: small;"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-8">^</a></b></span><a class="external text" rel="nofollow" href="http://www.cbse.ucsc.edu/news/2003/10/16/pufferfish_fruitfly/index.shtml"><span style="font-size: small;">CBSE News, Thursday, 16 October 2003</span></a></li>
    <li id="cite_note-9"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-9">^</a></b> <a class="external text" rel="nofollow" href="http://www.genome.gov/12511476">NHGRI, pressrelease of the publishing of the dog genome</a></li>
+
    <li id="cite_note-9"><span style="font-size: small;"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-9">^</a></b></span><a class="external text" rel="nofollow" href="http://www.genome.gov/12511476"><span style="font-size: small;">NHGRI, pressrelease of the publishing of the dog genome</span></a></li>
    <li id="cite_note-McGrath-10"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-McGrath_10-0">^</a></b> <span class="citation book">McGrath S and van Sinderen D, ed (2007). <a class="external text" rel="nofollow" href="http://www.horizonpress.com/phage"><i>Bacteriophage: Genetics and Molecular Biology</i></a> (1st ed.). Caister Academic Press. <a title="International Standard Book Number" href="http://en.wikipedia.org/wiki/International_Standard_Book_Number">ISBN</a>&nbsp;<a title="Special:BookSources/978-1-904455-14-1" href="http://en.wikipedia.org/wiki/Special:BookSources/978-1-904455-14-1">978-1-904455-14-1</a>.</span></li>
+
    <li id="cite_note-McGrath-10"><span style="font-size: small;"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-McGrath_10-0">^</a></b></span><span style="font-size: small;"> <span class="citation book">McGrath S and van Sinderen D, ed (2007). </span></span><span class="citation book"><a class="external text" rel="nofollow" href="http://www.horizonpress.com/phage"><span style="font-size: small;"><i>Bacteriophage: Genetics and Molecular Biology</i></span></a><span style="font-size: small;"> (1st ed.). Caister Academic Press. </span><a title="International Standard Book Number" href="http://en.wikipedia.org/wiki/International_Standard_Book_Number"><span style="font-size: small;">ISBN</span></a><span style="font-size: small;">&nbsp;</span><a title="Special:BookSources/978-1-904455-14-1" href="http://en.wikipedia.org/wiki/Special:BookSources/978-1-904455-14-1"><span style="font-size: small;">978-1-904455-14-1</span></a></span><span style="font-size: small;"><span class="citation book">.</span></span></li>
     <li id="cite_note-Herrero-11"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-Herrero_11-0">^</a></b> <span class="citation book">Herrero A and Flores E, ed (2008). <a class="external text" rel="nofollow" href="http://www.horizonpress.com/cyan"><i>The Cyanobacteria: Molecular Biology, Genomics and Evolution</i></a> (1st ed.). Caister Academic Press. <a title="International Standard Book Number" href="http://en.wikipedia.org/wiki/International_Standard_Book_Number">ISBN</a>&nbsp;<a title="Special:BookSources/978-1-904455-15-8" href="http://en.wikipedia.org/wiki/Special:BookSources/978-1-904455-15-8">978-1-904455-15-8</a>.</span></li>
+
    <li id="cite_note-Herrero-11"><span style="font-size: small;"><b><a href="http://en.wikipedia.org/wiki/Genomics#cite_ref-Herrero_11-0">^</a></b></span><span style="font-size: small;"> <span class="citation book">Herrero A and Flores E, ed (2008). </span></span><span class="citation book"><a class="external text" rel="nofollow" href="http://www.horizonpress.com/cyan"><span style="font-size: small;"><i>The Cyanobacteria: Molecular Biology, Genomics and Evolution</i></span></a><span style="font-size: small;"> (1st ed.). Caister Academic Press. </span><a title="International Standard Book Number" href="http://en.wikipedia.org/wiki/International_Standard_Book_Number"><span style="font-size: small;">ISBN</span></a><span style="font-size: small;">&nbsp;</span><a title="Special:BookSources/978-1-904455-15-8" href="http://en.wikipedia.org/wiki/Special:BookSources/978-1-904455-15-8"><span style="font-size: small;">978-1-904455-15-8</span></a></span><span style="font-size: small;"><span class="citation book">.</span></span></li>
 
</ol>
 
</ol>
 
</div>
 
</div>
 +
<h2>&nbsp;</h2>
 
<h2><span id="External_links" class="mw-headline">External links</span></h2>
 
<h2><span id="External_links" class="mw-headline">External links</span></h2>
 
<ul>
 
<ul>
     <li><a class="external text" rel="nofollow" href="http://www.genomicsdirectory.com/">Genomics Directory</a>: A one-stop biotechnology resource center for bioentrepreneurs, scientists, and students</li>
+
     <li><a class="external text" rel="nofollow" href="http://www.genomicsdirectory.com/"><span style="font-size: medium;">Genomics Directory</span></a><span style="font-size: medium;">: A one-stop biotechnology resource center for bioentrepreneurs, scientists, and students</span></li>
     <li><a class="external text" rel="nofollow" href="http://arjournals.annualreviews.org/loi/genom/">Annual Review of Genomics and Human Genetics</a></li>
+
     <li><a class="external text" rel="nofollow" href="http://arjournals.annualreviews.org/loi/genom/"><span style="font-size: medium;">Annual Review of Genomics and Human Genetics</span></a></li>
     <li><a class="external text" rel="nofollow" href="http://www.biomedcentral.com/bmcgenomics/">BMC Genomics</a>: A BMC journal on Genomics</li>
+
     <li><a class="external text" rel="nofollow" href="http://www.biomedcentral.com/bmcgenomics/"><span style="font-size: medium;">BMC Genomics</span></a><span style="font-size: medium;">: A BMC journal on Genomics</span></li>
     <li><a class="external text" rel="nofollow" href="http://www.caglab.org/">Center for Applied Genomics</a>: Genomics Research - a specialized Center of Emphasis at the Children&rsquo;s Hospital of Philadelphia</li>
+
     <li><a class="external text" rel="nofollow" href="http://www.caglab.org/"><span style="font-size: medium;">Center for Applied Genomics</span></a><span style="font-size: medium;">: Genomics Research - a specialized Center of Emphasis at the Children&rsquo;s Hospital of Philadelphia</span></li>
     <li><a class="external text" rel="nofollow" href="http://www.genomics.co.uk/companylist.php">Genomics</a>: UK companies and laboratories* <a class="external text" rel="nofollow" href="http://www.elsevier.com/wps/find/journaldescription.cws_home/622838/description#description">Genomics journal</a></li>
+
     <li><a class="external text" rel="nofollow" href="http://www.genomics.co.uk/companylist.php"><span style="font-size: medium;">Genomics</span></a><span style="font-size: medium;">: UK companies and laboratories* </span><a class="external text" rel="nofollow" href="http://www.elsevier.com/wps/find/journaldescription.cws_home/622838/description#description"><span style="font-size: medium;">Genomics journal</span></a></li>
     <li><a class="external text" rel="nofollow" href="http://www.knoblauchpublishing.com/">Genomics and Quantitative Genetics</a>: An international electronic, open access journal publishing, inter alia, genomics research.</li>
+
     <li><a class="external text" rel="nofollow" href="http://www.knoblauchpublishing.com/"><span style="font-size: medium;">Genomics and Quantitative Genetics</span></a><span style="font-size: medium;">: An international electronic, open access journal publishing, inter alia, genomics research.</span></li>
     <li><a class="external text" rel="nofollow" href="../../../">Genomics.org</a>: An openfree wiki based Genomics portal</li>
+
     <li><a class="external text" rel="nofollow" href="../../../"><span style="font-size: medium;">Genomics.org</span></a><span style="font-size: medium;">: An openfree wiki based Genomics portal</span></li>
     <li><a class="external text" rel="nofollow" href="http://www.genome.gov/">NHGRI</a>: US government's genome institute</li>
+
     <li><a class="external text" rel="nofollow" href="http://www.genome.gov/"><span style="font-size: medium;">NHGRI</span></a><span style="font-size: medium;">: US government's genome institute</span></li>
     <li><a class="external text" rel="nofollow" href="http://www.springer.com/humana+press/pharmacology+and+toxicology/book/978-1-58829-887-4">Pharmacogenomics in Drug Discovery and Development</a>, a book on pharmacogenomics, diseases, personalized medicine, and therapeutics</li>
+
     <li><a class="external text" rel="nofollow" href="http://www.springer.com/humana+press/pharmacology+and+toxicology/book/978-1-58829-887-4"><span style="font-size: medium;">Pharmacogenomics in Drug Discovery and Development</span></a><span style="font-size: medium;">, a book on pharmacogenomics, diseases, personalized medicine, and therapeutics</span></li>
     <li><a class="external text" rel="nofollow" href="http://www.zpu-journal.ru/en/articles/detail.php?ID=342">Tishchenko P. D. Genomics: New Science in the New Cultural Situation</a></li>
+
     <li><a class="external text" rel="nofollow" href="http://www.zpu-journal.ru/en/articles/detail.php?ID=342"><span style="font-size: medium;">Tishchenko P. D. Genomics: New Science in the New Cultural Situation</span></a></li>
     <li><a class="external text" rel="nofollow" href="http://www.lcg.unam.mx/">Undergraduate program on Genomic Sciences (spanish)</a>: One of the first undergraduate programs in the world</li>
+
     <li><a class="external text" rel="nofollow" href="http://www.lcg.unam.mx/"><span style="font-size: medium;">Undergraduate program on Genomic Sciences (spanish)</span></a><span style="font-size: medium;">: One of the first undergraduate programs in the world</span></li>
     <li><a class="external text" rel="nofollow" href="http://cmr.jcvi.org/">JCVI Comprehensive Microbial Resource</a></li>
+
     <li><a class="external text" rel="nofollow" href="http://cmr.jcvi.org/"><span style="font-size: medium;">JCVI Comprehensive Microbial Resource</span></a></li>
     <li><a class="external text" rel="nofollow" href="http://pathema.jcvi.org/">Pathema: A Clade Specific Bioinformatics Resource Center</a></li>
+
     <li><a class="external text" rel="nofollow" href="http://pathema.jcvi.org/"><span style="font-size: medium;">Pathema: A Clade Specific Bioinformatics Resource Center</span></a></li>
     <li><a class="external text" rel="nofollow" href="http://koreagenome.org/">KoreaGenome.org</a>: The first Korean Genome published and the sequence is available freely.</li>
+
     <li><span style="font-size: medium;"><a class="external text" rel="nofollow" href="http://koreagenome.org/">KoreaGenome.org</a>&nbsp;and [http://KoreanGenome.org KoreanGenome.org]</span><span style="font-size: medium;">: The first Korean Genome published and the sequence is available freely.</span></li>
     <li><a class="external text" rel="nofollow" href="http://genomicsnetwork.ac.uk/">GenomicsNetwork</a>: Looks at the development and use of the science and technologies of genomics.</li>
+
     <li><a class="external text" rel="nofollow" href="http://genomicsnetwork.ac.uk/"><span style="font-size: medium;">GenomicsNetwork</span></a><span style="font-size: medium;">: Looks at the development and use of the science and technologies of genomics.</span></li>
     <li><a class="external text" rel="nofollow" href="http://www.igs.umaryland.edu/research_topics.php">Institute for Genome Sciences</a>: Genomics research.</li>
+
     <li><a class="external text" rel="nofollow" href="http://www.igs.umaryland.edu/research_topics.php"><span style="font-size: medium;">Institute for Genome Sciences</span></a><span style="font-size: medium;">: Genomics research.</span></li>
     <li><a class="external text" rel="nofollow" href="http://ocw.mit.edu/courses/health-sciences-and-technology/hst-512-genomic-medicine-spring-2004/">MIT OpenCourseWare HST.512 Genomic Medicine</a> A free, self-study course in genomic medicine. Resources include audio lectures and selected lecture notes.</li>
+
     <li><a class="external text" rel="nofollow" href="http://ocw.mit.edu/courses/health-sciences-and-technology/hst-512-genomic-medicine-spring-2004/"><span style="font-size: medium;">MIT OpenCourseWare HST.512 Genomic Medicine</span></a><span style="font-size: medium;"> A free, self-study course in genomic medicine. Resources include audio lectures and selected lecture notes.</span></li>
     <li><a class="external text" rel="nofollow" href="http://www.extension.org/plant_breeding_genomics">The Plant Breeding and Genomics Community of Practice on eXtension</a> - provides education and training materials for plant breeders and allied professionals</li>
+
     <li><a class="external text" rel="nofollow" href="http://www.extension.org/plant_breeding_genomics"><span style="font-size: medium;">The Plant Breeding and Genomics Community of Practice on eXtension</span></a><span style="font-size: medium;"> - provides education and training materials for plant breeders and allied professionals</span></li>
 
</ul>
 
</ul>
 +
<p><span style="font-size: medium;">&nbsp;</span></p>
 +
<p>&nbsp;</p>

Latest revision as of 07:44, 15 August 2013

Genomics is a discipline in omics concerning the study of the genomes and associated omes of organisms.

The field includes efforts to determine the entire DNA sequence of organisms and fine-scale genetic mapping efforts.

The field also includes studies of intragenomic phenomena such as heterosis, epistasis, pleiotropy and other interactions between loci and alleles within the genome. In contrast, the investigation of the roles and functions of single genes is a primary focus of molecular biology or genetics and is a common topic of modern medical and biological research.

Research of single genes does not fall into the definition of genomics unless the aim of this genetic, pathway, and functional information analysis is to elucidate its effect on, place in, and response to the entire genome's networks.

For the United States Environmental Protection Agency, "the term "genomics" encompasses a broader scope of scientific inquiry associated technologies than when genomics was initially considered. A genome is the sum total of all an individual organism's genes. Thus, genomics is the study of all the genes of a cell, or tissue, at the DNA (genotype), mRNA (transcriptome), or protein (proteome) levels."[1]


History

The first genomes to be sequenced were those of a virus and a mitochondrion, and were done by Fred Sanger. His group established techniques of sequencing, genome mapping, data storage, and bioinformatic analyses in the 1970-1980s. A major branch of genomics is still concerned with sequencing the genomes of various organisms, but the knowledge of full genomes has created the possibility for the field of functional genomics, mainly concerned with patterns of gene expression during various conditions. The most important tools here are microarrays and bioinformatics. Study of the full set of proteins in a cell type or tissue, and the changes during various conditions, is called proteomics. A related concept is materiomics, which is defined as the study of the material properties of biological materials (e.g. hierarchical protein structures and materials, mineralized biological tissues, etc.) and their effect on the macroscopic function and failure in their biological context, linking processes, structure and properties at multiple scales through a materials science approach. The actual term 'genomics' is thought to have been coined by Dr. Tom Roderick, a geneticist at the Jackson Laboratory (Bar Harbor, ME) over beer at a meeting held in Maryland on the mapping of the human genome in 1986.

In 1972, Walter Fiers and his team at the Laboratory of Molecular Biology of the University of Ghent (Ghent, Belgium) were the first to determine the sequence of a gene: the gene for Bacteriophage MS2 coat protein.[2] In 1976, the team determined the complete nucleotide-sequence of bacteriophage MS2-RNA.[3] The first DNA-based genome to be sequenced in its entirety was that of bacteriophageΦ-X174; (5,368 bp), sequenced by Frederick Sanger in 1977.[4]

The first free-living organism to be sequenced was that of Haemophilus influenzae (1.8 Mb) in 1995[5], and since then genomes are being sequenced at a rapid pace.

As of September 2007, the complete sequence was known of about 1879 viruses,[6] 577 bacterial species and roughly 23 eukaryote organisms, of which about half are fungi. [7] Most of the bacteria whose genomes have been completely sequenced are problematic disease-causing agents, such as Haemophilus influenzae. Of the other sequenced species, most were chosen because they were well-studied model organisms or promised to become good models. Yeast (Saccharomyces cerevisiae) has long been an important model organism for the eukaryotic cell, while the fruit fly Drosophila melanogaster has been a very important tool (notably in early pre-molecular genetics). The worm Caenorhabditis elegans is an often used simple model for multicellular organisms. The zebrafish Brachydanio rerio is used for many developmental studies on the molecular level and the flower Arabidopsis thaliana is a model organism for flowering plants. The Japanese pufferfish (Takifugu rubripes) and the spotted green pufferfish (Tetraodon nigroviridis) are interesting because of their small and compact genomes, containing very little non-coding DNA compared to most species. [8][9] The mammals dog (Canis familiaris), [10] brown rat (Rattus norvegicus), mouse (Mus musculus), and chimpanzee (Pan troglodytes) are all important model animals in medical research.

 

Human genomics

A rough draft of the human genome was completed by the Human Genome Project in early 2001, creating much fanfare. By 2007 the human sequence was declared "finished" (less than one error in 20,000 bases and all chromosomes assembled). Display of the results of the project required significant bioinformatics resources. The sequence of the human reference assembly can be explored using the UCSC Genome Browser or Ensembl.

 

Bacteriophage genomics

Bacteriophages have played and continue to play a key role in bacterial genetics and molecular biology. Historically, they were used to define gene structure and gene regulation. Also the first genome to be sequenced was a bacteriophage. However, bacteriophage research did not lead the genomics revolution, which is clearly dominated by bacterial genomics. Only very recently has the study of bacteriophage genomes become prominent, thereby enabling researchers to understand the mechanisms underlying phage evolution. Bacteriophage genome sequences can be obtained through direct sequencing of isolated bacteriophages, but can also be derived as part of microbial genomes. Analysis of bacterial genomes has shown that a substantial amount of microbial DNA consists of prophage sequences and prophage-like elements. A detailed database mining of these sequences offers insights into the role of prophages in shaping the bacterial genome.[11]

 

Cyanobacteria genomics

At present there are 24 cyanobacteria for which a total genome sequence is available. 15 of these cyanobacteria come from the marine environment. These are six Prochlorococcus strains, seven marine Synechococcus strains, Trichodesmium erythraeum IMS101 and Crocosphaera watsoniiWH8501. Several studies have demonstrated how these sequences could be used very successfully to infer important ecological and physiological characteristics of marine cyanobacteria. However, there are many more genome projects currently in progress, amongst those there are further Prochlorococcus and marine Synechococcus isolates, Acaryochloris and Prochloron, the N2-fixing filamentous cyanobacteria Nodularia spumigena, Lyngbya aestuarii and Lyngbya majuscula, as well as bacteriophages infecting marine cyanobaceria. Thus, the growing body of genome information can also be tapped in a more general way to address global problems by applying a comparative approach. Some new and exciting examples of progress in this field are the identification of genes for regulatory RNAs, insights into the evolutionary origin of photosynthesis, or estimation of the contribution of horizontal gene transfer to the genomes that have been analyzed.[12]

 

See also

 

References

  1. ^EPA Interim Genomics Policy
  2. ^ Min Jou W, Haegeman G, Ysebaert M, Fiers W (1972). "Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein". Nature 237 (5350): 82–88. doi:10.1038/237082a0. PMID 4555447.
  3. ^ Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min Jou W, Molemans F, Raeymaekers A, Van den Berghe A, Volckaert G, Ysebaert M (1976). "Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene". Nature 260 (5551): 500–507. Bibcode1976Natur.260..500F. doi:10.1038/260500a0. PMID 1264203.
  4. ^ Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977). "Nucleotide sequence of bacteriophage phi X174 DNA". Nature 265 (5596): 687–695. doi:10.1038/265687a0. PMID 870828.
  5. ^ Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. (1995). "Whole-genome random sequencing and assembly of Haemophilus influenzae Rd". Science 269 (5223): 496–512. doi:10.1126/science.7542800. PMID 7542800.
  6. ^The Viral Genomes Resource, NCBI Friday, 14 September 2007
  7. ^Genome Project Statistic, NCBI Friday, 14 September 2007
  8. ^BBC article Human gene number slashed from Wednesday, 20 October 2004
  9. ^CBSE News, Thursday, 16 October 2003
  10. ^NHGRI, pressrelease of the publishing of the dog genome
  11. ^ McGrath S and van Sinderen D, ed (2007). Bacteriophage: Genetics and Molecular Biology (1st ed.). Caister Academic Press. ISBN 978-1-904455-14-1.
  12. ^ Herrero A and Flores E, ed (2008). The Cyanobacteria: Molecular Biology, Genomics and Evolution (1st ed.). Caister Academic Press. ISBN 978-1-904455-15-8.

 

External links