Difference between revisions of "Genome"

From PGI

Jump to: navigation, search
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<p><font color="#000000"><font size="3">The&nbsp;<strong>genome</strong> is the entirety of a set of sequences in an organism that&nbsp;encodes information for survival and the&nbsp;continuation of the species it belongs to. The main function of genome is information storage and processing to form an entity that utilizes envergy to keep process signals to interact with other genomes in the whole eco-system.</font><br />
+
<p><font color="#000000"><font size="3">The&nbsp;<strong>genome</strong> is the entire&nbsp;set of sequences in an organism that&nbsp;encodes information for survival and the&nbsp;continuation of the species it belongs to. </font></font></p>
 +
<p>&nbsp;</p>
 +
<p><span style="font-size: large"><font color="#000000">Main function of genomes</font></span></p>
 +
<p><font color="#000000"><font size="3">The main function of genome is information storaging and processing to form an entity that utilizes energy to keep processing signals to interact with other genomes in the whole eco-system.</font><br />
 
<br />
 
<br />
The genome is universal in the universe and aliens living other planets also have genomes.<br />
+
<font size="3">The genome is universal in the universe and aliens living&nbsp;on other planets also have genomes. The chemical construction may be slightly different but the information deposition and processing function is the same.</font></font></p>
 +
<p><font color="#000000"><font size="3">The information is usually stored&nbsp;in DNA or RNA in the organisms found on Earth.<br />
 
<br />
 
<br />
The information is usually stored&nbsp;in DNA or RNA in the organisms found on Earth.<br />
+
The genome is often classified&nbsp;into the protein coding genes and the non-coding sequences of the DNA historically.<sup id="cite_ref-0" class="reference"><font size="2"><font size="3"><span>[</span>1</font><span><font size="3">]</font><br />
 +
</span></font></sup></font></font></p>
 +
<p>&nbsp;</p>
 +
<p><span style="font-size: large"><font color="#000000">The essence of genome</font></span></p>
 +
<p><font color="#000000"><font size="3">The essence of genomes is that it is the foundation of spontaneous information processing network that can utilizes energy in time axis. The genome is a kind of linearly expressed language system.</font></font><font color="#000000"><font size="3"><br />
 
<br />
 
<br />
The genome is often classified&nbsp;into the protein coding genes and the non-coding sequences of the DNA historically.<sup id="cite_ref-0" class="reference"><font size="2"><span>[</span>1<span>]<br />
+
</font></font></p>
</span></font></sup></font></p>
+
<p>&nbsp;</p>
<h2><span id="Origin_of_Term" class="mw-headline"><font color="#000000">Origin of Term</font></span></h2>
+
<p><span style="font-size: large"><span id="Origin_of_Term" class="mw-headline"><font color="#000000">Origin of Term</font></span></span></p>
<p><font color="#000000">The term was adapted in 1920 by Hans Winkler, Professor of Botany at the University of Hamburg, Germany. In Greek, the word <em>genome</em> (&gamma;ί&nu;&omicron;&mu;&alpha;&iota;) means I become, I am born, to come into being. The Oxford English Dictionary suggests the name to be a blend of the words <em><strong>gen</strong>e</em> and <em>chromos<strong>ome</strong></em>. A few related <em>-ome</em> words already existed, such as <em>biome</em> and <em>rhizome</em>, forming a vocabulary into which <em>genome</em> fits systematically.<sup id="cite_ref-1" class="reference"><font size="2"><span>[</span>2<span>]</span></font></sup></font></p>
+
<p><span style="font-size: small"><font color="#000000">The term was adapted in 1920 by [[Hans Winkler]], Professor of Botany at the University of Hamburg, Germany. In Greek, the word <em>genome</em> (&gamma;ί&nu;&omicron;&mu;&alpha;&iota;) means I become, I am born, to come into being. </font></span></p>
<h2><span id="Overview" class="mw-headline"><font color="#000000">Overview</font></span></h2>
+
<p><span style="font-size: small"><font color="#000000">The Oxford English Dictionary suggests the name to be a blend of the words <em><strong>gen</strong>e</em> and <em>chromos<strong>ome</strong></em>. A few related <em>-ome</em> words already existed, such as <em>biome</em> and <em>rhizome</em>, forming a vocabulary into which <em>genome</em> fits systematically.<sup id="cite_ref-1" class="reference">[2]</sup></font></span></p>
<p><font color="#000000">Some organisms have multiple copies of chromosomes, diploid, triploid, tetraploid and so on. In classical genetics, in a sexually reproducing organism (typically eukarya) the gamete has half of the number of chromosome of the somatic cell and the genome is a full set of chromosomes in a gamete. In haploid organisms, including cells of bacteria, archaea, and in organelles including mitochondria and chloroplasts, or viruses, that similarly contain genes, the single or set of circular and/or linear chains of DNA (or RNA for some viruses), likewise constitute the <em>genome</em>. The term genome can be applied specifically to mean that stored on a complete set of <em>nuclear DNA</em> (i.e., the &quot;nuclear genome&quot;) but can also be applied to that stored within organelles that contain their own DNA, as with the &quot;mitochondrial genome&quot; or the &quot;chloroplast genome&quot;. Additionally, the genome can comprise nonchromosomal genetic elements such as viruses, plasmids, and transposable elements<sup id="cite_ref-Brock_2-0" class="reference"><font size="2"><span>[</span>3<span>]</span></font></sup>. When people say that the genome of a sexually reproducing species has been &quot;sequenced&quot;, typically they are referring to a determination of the sequences of one set of autosomes and one of each type of sex chromosome, which together represent both of the possible sexes. Even in species that exist in only one sex, what is described as &quot;a genome sequence&quot; may be a composite read from the chromosomes of various individuals. In general use, the phrase &quot;genetic makeup&quot; is sometimes used conversationally to mean the genome of a particular individual or organism. The study of the global properties of genomes of related organisms is usually referred to as genomics, which distinguishes it from genetics which generally studies the properties of single genes or groups of genes.</font></p>
+
<p><span style="font-size: large"><span id="Overview" class="mw-headline"><font color="#000000">Overview</font></span></span></p>
<p><font color="#000000">Both the number of base pairs and the number of genes vary widely from one species to another, and there is only a rough correlation between the two (an observation known as the C-value paradox). At present, the highest known number of genes is around 60,000, for the protozoan causing trichomoniasis (see List of sequenced eukaryotic genomes), almost three times as many as in the human genome.</font></p>
+
<p><span style="font-size: small"><font color="#000000">Some organisms have multiple copies of chromosomes, diploid, triploid, tetraploid and so on. In classical genetics, in a sexually reproducing organism (typically eukarya) the gamete has half of the number of chromosome of the somatic cell and the genome is a full set of chromosomes in a gamete. In haploid organisms, including cells of bacteria, archaea, and in organelles including mitochondria and chloroplasts, or viruses, that similarly contain genes, the single or set of circular and/or linear chains of DNA (or RNA for some viruses), likewise constitute the <em>genome</em>. The term genome can be applied specifically to mean that stored on a complete set of <em>nuclear DNA</em> (i.e., the &quot;nuclear genome&quot;) but can also be applied to that stored within organelles that contain their own DNA, as with the &quot;mitochondrial genome&quot; or the &quot;chloroplast genome&quot;. Additionally, the genome can comprise nonchromosomal genetic elements such as viruses, plasmids, and transposable elements<sup id="cite_ref-Brock_2-0" class="reference">[3]</sup>. When people say that the genome of a sexually reproducing species has been &quot;sequenced&quot;, typically they are referring to a determination of the sequences of one set of autosomes and one of each type of sex chromosome, which together represent both of the possible sexes. Even in species that exist in only one sex, what is described as &quot;a genome sequence&quot; may be a composite read from the chromosomes of various individuals. In general use, the phrase &quot;genetic makeup&quot; is sometimes used conversationally to mean the genome of a particular individual or organism. The study of the global properties of genomes of related organisms is usually referred to as genomics, which distinguishes it from genetics which generally studies the properties of single genes or groups of genes.</font></span></p>
<p><font color="#000000">An analogy to the human genome stored on DNA is that of instructions stored in a library:</font></p>
+
<p><span style="font-size: small"><font color="#000000">Both the number of base pairs and the number of genes vary widely from one species to another, and there is only a rough correlation between the two (an observation known as the C-value paradox). At present, the highest known number of genes is around 60,000, for the protozoan causing trichomoniasis (see List of sequenced eukaryotic genomes), almost three times as many as in the human genome.</font></span></p>
 +
<p><span style="font-size: small"><font color="#000000">An analogy to the human genome stored on DNA is that of instructions stored in a library:</font></span></p>
 
<ul>
 
<ul>
     <li><font color="#000000">The library would contain 46 books (chromosomes)</font> </li>
+
     <li><span style="font-size: small"><font color="#000000">The library would contain 46 books (chromosomes)</font> </span></li>
     <li><font color="#000000">The books range in size from 400 to 3340 pages (genes)</font> </li>
+
     <li><span style="font-size: small"><font color="#000000">The books range in size from 400 to 3340 pages (genes)</font> </span></li>
     <li><font color="#000000">which is 48 to 250 million letters (A,C,G,T) per book.</font> </li>
+
     <li><span style="font-size: small"><font color="#000000">which is 48 to 250 million letters (A,C,G,T) per book.</font> </span></li>
     <li><font color="#000000">Hence the library contains over six billion letters total;</font> </li>
+
     <li><span style="font-size: small"><font color="#000000">Hence the library contains over six billion letters total;</font> </span></li>
     <li><font color="#000000">The library fits into a cell nucleus the size of a pinpoint;</font> </li>
+
     <li><span style="font-size: small"><font color="#000000">The library fits into a cell nucleus the size of a pinpoint;</font> </span></li>
     <li><font color="#000000">A copy of the library (all 46 books) is contained in almost every cell of our body.</font> </li>
+
     <li><span style="font-size: small"><font color="#000000">A copy of the library (all 46 books) is contained in almost every cell of our body.</font> </span></li>
 
</ul>
 
</ul>
<h2><span id="Types" class="mw-headline"><font color="#000000">Types</font></span></h2>
+
<p><span style="font-size: large"><span id="Types" class="mw-headline"><font color="#000000">Types</font></span></span></p>
<p><font color="#000000">Most biological entities that are more complex than a virus sometimes or always carry additional genetic material besides that which resides in their chromosomes. In some contexts, such as sequencing the genome of a pathogenic microbe, &quot;genome&quot; is meant to include information stored on this auxiliary material, which is carried in plasmids. In such circumstances then, &quot;genome&quot; describes all of the genes and information on non-coding DNA that have the potential to be present.</font></p>
+
<p><span style="font-size: small"><font color="#000000">Most biological entities that are more complex than a virus sometimes or always carry additional genetic material besides that which resides in their chromosomes. In some contexts, such as sequencing the genome of a pathogenic microbe, &quot;genome&quot; is meant to include information stored on this auxiliary material, which is carried in plasmids. In such circumstances then, &quot;genome&quot; describes all of the genes and information on non-coding DNA that have the potential to be present.</font></span></p>
<p><font color="#000000">In eukaryotes such as plants, protozoa and animals, however, &quot;genome&quot; carries the typical connotation of only information on chromosomal DNA. So although these organisms contain chloroplasts and/or mitochondria that have their own DNA, the genetic information contained by DNA within these organelles is not considered part of the genome. In fact, mitochondria are sometimes said to have their own genome often referred to as the &quot;mitochondrial genome&quot;. The DNA found within the chloroplast may be referred to as the &quot;plastome&quot;.</font></p>
+
<p><span style="font-size: small"><font color="#000000">In eukaryotes such as plants, protozoa and animals, however, &quot;genome&quot; carries the typical connotation of only information on chromosomal DNA. So although these organisms contain chloroplasts and/or mitochondria that have their own DNA, the genetic information contained by DNA within these organelles is not considered part of the genome. In fact, mitochondria are sometimes said to have their own genome often referred to as the &quot;mitochondrial genome&quot;. The DNA found within the chloroplast may be referred to as the &quot;plastome&quot;.</font></span></p>
<h2><span id="Genomes_and_genetic_variation" class="mw-headline"><font color="#000000">Genomes and genetic variation</font></span></h2>
+
<p><span style="font-size: large"><span id="Genomes_and_genetic_variation" class="mw-headline"><font color="#000000">Genomes and genetic variation</font></span></span></p>
<p><font color="#000000">Note that a genome does not capture the genetic diversity or the genetic polymorphism of a species. For example, the human genome sequence in principle could be determined from just half the information on the DNA of one cell from one individual. To learn what variations in genetic information underlie particular traits or diseases requires comparisons across individuals. This point explains the common usage of &quot;genome&quot; (which parallels a common usage of &quot;gene&quot;) to refer not to the information in any particular DNA sequence, but to a whole family of sequences that share a biological context.</font></p>
+
<p><span style="font-size: small"><font color="#000000">Note that a genome does not capture the genetic diversity or the genetic polymorphism of a species. For example, the human genome sequence in principle could be determined from just half the information on the DNA of one cell from one individual. To learn what variations in genetic information underlie particular traits or diseases requires comparisons across individuals. This point explains the common usage of &quot;genome&quot; (which parallels a common usage of &quot;gene&quot;) to refer not to the information in any particular DNA sequence, but to a whole family of sequences that share a biological context.</font></span></p>
<p><font color="#000000">Although this concept may seem counter intuitive, it is the same concept that says there is no particular shape that is the shape of a cheetah. Cheetahs vary, and so do the sequences of their genomes. Yet both the individual animals and their sequences share commonalities, so one can learn something about cheetahs and &quot;cheetah-ness&quot; from a single example of either.</font></p>
+
<p><span style="font-size: small"><font color="#000000">Although this concept may seem counter intuitive, it is the same concept that says there is no particular shape that is the shape of a cheetah. Cheetahs vary, and so do the sequences of their genomes. Yet both the individual animals and their sequences share commonalities, so one can learn something about cheetahs and &quot;cheetah-ness&quot; from a single example of either.</font></span></p>
<h2><span id="Sequencing_and_mapping" class="mw-headline"><font color="#000000">Sequencing and mapping</font></span></h2>
+
<p>&nbsp;</p>
<div class="rellink boilerplate seealso"><font color="#000000">For more details on this topic, see Genome project.</font></div>
+
<p><span style="font-size: large"><span id="Sequencing_and_mapping" class="mw-headline"><font color="#000000">Sequencing and mapping</font></span></span></p>
<p><font color="#000000">The Human Genome Project was organized to map and to sequence the human genome. Other genome projects include mouse, rice, the plant <em>Arabidopsis thaliana</em>, the puffer fish, bacteria like E. coli, etc. In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome (bacteriophage MS2). The first DNA-genome project to be completed was the Phage &Phi;-X174, with only 5386 base pairs, which was sequenced by Fred Sanger in 1977 . The first bacterial genome to be completed was that of Haemophilus influenzae, completed by a team at The Institute for Genomic Research in 1995.</font></p>
+
<div class="rellink boilerplate seealso"><span style="font-size: small"><font color="#000000">For more details on this topic, see Genome project.</font></span></div>
<p><font color="#000000">The development of new technologies has dramatically decreased the difficulty and cost of sequencing, and the number of complete genome sequences is rising rapidly. Among many genome database sites, the one maintained by the US National Institutes of Health is inclusive.<sup id="cite_ref-3" class="reference"><font size="2"><span>[</span>4<span>]</span></font></sup></font></p>
+
<p><span style="font-size: small"><font color="#000000">The Human Genome Project was organized to map and to sequence the human genome. Other genome projects include mouse, rice, the plant <em>Arabidopsis thaliana</em>, the puffer fish, bacteria like E. coli, etc. In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome (bacteriophage MS2). The first DNA-genome project to be completed was the Phage &Phi;-X174, with only 5386 base pairs, which was sequenced by Fred Sanger in 1977 . The first bacterial genome to be completed was that of Haemophilus influenzae, completed by a team at The Institute for Genomic Research in 1995.</font></span></p>
<p><font color="#000000">These new technologies open up the prospect of personal genome sequencing as an important diagnostic tool. A major step toward that goal was the May 2007 <em>New York Times</em> announcement that the full genome of DNA pioneer James D. Watson was deciphered.<sup id="cite_ref-4" class="reference"><font size="2"><span>[</span>5<span>]</span></font></sup></font></p>
+
<p><span style="font-size: small"><font color="#000000">The development of new technologies has dramatically decreased the difficulty and cost of sequencing, and the number of complete genome sequences is rising rapidly. Among many genome database sites, the one maintained by the US National Institutes of Health is inclusive.<sup id="cite_ref-3" class="reference">[4]</sup></font></span></p>
<p><font color="#000000">Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome.<sup id="cite_ref-5" class="reference"><font size="2"><span>[</span>6<span>]</span></font></sup><sup id="cite_ref-6" class="reference"><font size="2"><span>[</span>7<span>]</span></font></sup></font></p>
+
<p><span style="font-size: small"><font color="#000000">These new technologies open up the prospect of personal genome sequencing as an important diagnostic tool. A major step toward that goal was the May 2007 <em>New York Times</em> announcement that the full genome of DNA pioneer James D. Watson was deciphered.<sup id="cite_ref-4" class="reference">[5]</sup></font></span></p>
 +
<p><span style="font-size: small"><font color="#000000">Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome.<sup id="cite_ref-5" class="reference">[6]</sup><sup id="cite_ref-6" class="reference">[7]</sup></font></span></p>
 
<h2><span id="Comparison_of_different_genome_sizes" class="mw-headline"><font color="#000000">Comparison of different genome sizes</font></span></h2>
 
<h2><span id="Comparison_of_different_genome_sizes" class="mw-headline"><font color="#000000">Comparison of different genome sizes</font></span></h2>
<div class="rellink relarticle mainarticle"><font color="#000000">Main article: Genome size</font></div>
+
<div class="rellink relarticle mainarticle"><span style="font-size: small"><font color="#000000">Main article: Genome size</font></span></div>
 +
<p>
 
<table id="sortable_table_id_0" class="wikitable sortable">
 
<table id="sortable_table_id_0" class="wikitable sortable">
 
     <tbody>
 
     <tbody>
 
         <tr>
 
         <tr>
             <th><font color="#000000">Organism type<span class="sortarrow"><img alt="" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
+
             <th><font color="#000000">Organism type<span class="sortarrow"><img alt="&darr;" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
             <th><font color="#000000">Organism<span class="sortarrow"><img alt="" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
+
             <th><font color="#000000">Organism<span class="sortarrow"><img alt="&darr;" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
             <th><font color="#000000">Genome size (base pairs)<span class="sortarrow"><img alt="" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
+
             <th><font color="#000000">Genome size (base pairs)<span class="sortarrow"><img alt="&darr;" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
             <th><font color="#000000">mass - in pg<span class="sortarrow"><img alt="" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
+
             <th><font color="#000000">mass - in pg<span class="sortarrow"><img alt="&darr;" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
             <th><font color="#000000">Note<span class="sortarrow"><img alt="" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
+
             <th><font color="#000000">Note<span class="sortarrow"><img alt="&darr;" src="http://bits.wikimedia.org/skins-1.5/common/images/sort_none.gif" /></span></font></th>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 55: Line 66:
 
             <td><font color="#000000">SV40</font></td>
 
             <td><font color="#000000">SV40</font></td>
 
             <td align="right"><font color="#000000">5,224</font></td>
 
             <td align="right"><font color="#000000">5,224</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><sup id="cite_ref-Fiers1978_8-0" class="reference"><font size="2"><font color="#000000"><span>[</span>9<span>]</span></font></font></sup></td>
 
             <td><sup id="cite_ref-Fiers1978_8-0" class="reference"><font size="2"><font color="#000000"><span>[</span>9<span>]</span></font></font></sup></td>
 
         </tr>
 
         </tr>
Line 62: Line 73:
 
             <td><font color="#000000">Phage &Phi;-X174</font></td>
 
             <td><font color="#000000">Phage &Phi;-X174</font></td>
 
             <td align="right"><font color="#000000">5,386</font></td>
 
             <td align="right"><font color="#000000">5,386</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><font color="#000000">First sequenced DNA-genome<sup id="cite_ref-Sanger1977_9-0" class="reference"><font size="2"><span>[</span>10<span>]</span></font></sup></font></td>
 
             <td><font color="#000000">First sequenced DNA-genome<sup id="cite_ref-Sanger1977_9-0" class="reference"><font size="2"><span>[</span>10<span>]</span></font></sup></font></td>
 
         </tr>
 
         </tr>
Line 69: Line 80:
 
             <td><font color="#000000">HIV</font></td>
 
             <td><font color="#000000">HIV</font></td>
 
             <td align="right"><font color="#000000">9749<sup id="cite_ref-10" class="reference"><font size="2"><span>[</span>11<span>]</span></font></sup></font></td>
 
             <td align="right"><font color="#000000">9749<sup id="cite_ref-10" class="reference"><font size="2"><span>[</span>11<span>]</span></font></sup></font></td>
             <td><font color="#000000" size="2"></font></td>
+
             <td>&nbsp;</td>
             <td><font color="#000000" size="2"></font></td>
+
             <td>&nbsp;</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 76: Line 87:
 
             <td><font color="#000000">Phage &lambda;</font></td>
 
             <td><font color="#000000">Phage &lambda;</font></td>
 
             <td align="right"><font color="#000000">48,502</font></td>
 
             <td align="right"><font color="#000000">48,502</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 82: Line 93:
 
             <td><font color="#000000">Mimivirus</font></td>
 
             <td><font color="#000000">Mimivirus</font></td>
 
             <td align="right"><font color="#000000">1,181,404</font></td>
 
             <td align="right"><font color="#000000">1,181,404</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><font color="#000000">Largest known viral genome</font></td>
 
             <td><font color="#000000">Largest known viral genome</font></td>
 
         </tr>
 
         </tr>
Line 89: Line 100:
 
             <td><em><font color="#000000">Haemophilus influenzae</font></em></td>
 
             <td><em><font color="#000000">Haemophilus influenzae</font></em></td>
 
             <td align="right"><font color="#000000">1,830,000</font></td>
 
             <td align="right"><font color="#000000">1,830,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><font color="#000000">First genome of living organism, July 1995<sup id="cite_ref-Fleichmann_1995_11-0" class="reference"><font size="2"><span>[</span>12<span>]</span></font></sup></font></td>
 
             <td><font color="#000000">First genome of living organism, July 1995<sup id="cite_ref-Fleichmann_1995_11-0" class="reference"><font size="2"><span>[</span>12<span>]</span></font></sup></font></td>
 
         </tr>
 
         </tr>
Line 96: Line 107:
 
             <td><em><font color="#000000">Carsonella ruddii</font></em></td>
 
             <td><em><font color="#000000">Carsonella ruddii</font></em></td>
 
             <td align="right"><font color="#000000">159,662</font></td>
 
             <td align="right"><font color="#000000">159,662</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><font color="#000000">Smallest non-viral genome.<sup id="cite_ref-12" class="reference"><font size="2"><span>[</span>13<span>]</span></font></sup></font></td>
 
             <td><font color="#000000">Smallest non-viral genome.<sup id="cite_ref-12" class="reference"><font size="2"><span>[</span>13<span>]</span></font></sup></font></td>
 
         </tr>
 
         </tr>
Line 103: Line 114:
 
             <td><em><font color="#000000">Buchnera aphidicola</font></em></td>
 
             <td><em><font color="#000000">Buchnera aphidicola</font></em></td>
 
             <td align="right"><font color="#000000">600,000</font></td>
 
             <td align="right"><font color="#000000">600,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 109: Line 120:
 
             <td><em><font color="#000000">Wigglesworthia glossinidia</font></em></td>
 
             <td><em><font color="#000000">Wigglesworthia glossinidia</font></em></td>
 
             <td align="right"><font color="#000000">700,000</font></td>
 
             <td align="right"><font color="#000000">700,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 115: Line 126:
 
             <td><em><font color="#000000">Escherichia coli</font></em></td>
 
             <td><em><font color="#000000">Escherichia coli</font></em></td>
 
             <td align="right"><font color="#000000">4,600,000</font></td>
 
             <td align="right"><font color="#000000">4,600,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><sup id="cite_ref-13" class="reference"><font size="2"><font color="#000000"><span>[</span>14<span>]</span></font></font></sup></td>
 
             <td><sup id="cite_ref-13" class="reference"><font size="2"><font color="#000000"><span>[</span>14<span>]</span></font></font></sup></td>
 
         </tr>
 
         </tr>
Line 122: Line 133:
 
             <td><font color="#000000"><em>Solibacter usitatus</em> (strain Ellin 6076)</font></td>
 
             <td><font color="#000000"><em>Solibacter usitatus</em> (strain Ellin 6076)</font></td>
 
             <td align="right"><font color="#000000">9,970,000</font></td>
 
             <td align="right"><font color="#000000">9,970,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><font color="#000000">Largest known Bacterial genome</font></td>
 
             <td><font color="#000000">Largest known Bacterial genome</font></td>
 
         </tr>
 
         </tr>
Line 136: Line 147:
 
             <td><em><font color="#000000">Arabidopsis thaliana</font></em></td>
 
             <td><em><font color="#000000">Arabidopsis thaliana</font></em></td>
 
             <td align="right"><font color="#000000">157,000,000</font></td>
 
             <td align="right"><font color="#000000">157,000,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><font color="#000000">First plant genome sequenced, December 2000.<sup id="cite_ref-Greilhuber_15-0" class="reference"><font size="2"><span>[</span>16<span>]</span></font></sup></font></td>
 
             <td><font color="#000000">First plant genome sequenced, December 2000.<sup id="cite_ref-Greilhuber_15-0" class="reference"><font size="2"><span>[</span>16<span>]</span></font></sup></font></td>
 
         </tr>
 
         </tr>
Line 143: Line 154:
 
             <td><em><font color="#000000">Genlisea margaretae</font></em></td>
 
             <td><em><font color="#000000">Genlisea margaretae</font></em></td>
 
             <td align="right"><font color="#000000">63,400,000</font></td>
 
             <td align="right"><font color="#000000">63,400,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><font color="#000000">Smallest recorded flowering plant genome, 2006.<sup id="cite_ref-Greilhuber_15-1" class="reference"><font size="2"><span>[</span>16<span>]</span></font></sup></font></td>
 
             <td><font color="#000000">Smallest recorded flowering plant genome, 2006.<sup id="cite_ref-Greilhuber_15-1" class="reference"><font size="2"><span>[</span>16<span>]</span></font></sup></font></td>
 
         </tr>
 
         </tr>
Line 150: Line 161:
 
             <td><em><font color="#000000">Fritillaria assyrica</font></em></td>
 
             <td><em><font color="#000000">Fritillaria assyrica</font></em></td>
 
             <td align="right"><font color="#000000">130,000,000,000</font></td>
 
             <td align="right"><font color="#000000">130,000,000,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 156: Line 167:
 
             <td><em><font color="#000000">Populus trichocarpa</font></em></td>
 
             <td><em><font color="#000000">Populus trichocarpa</font></em></td>
 
             <td align="right"><font color="#000000">480,000,000</font></td>
 
             <td align="right"><font color="#000000">480,000,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><font color="#000000">First tree genome, September 2006</font></td>
 
             <td><font color="#000000">First tree genome, September 2006</font></td>
 
         </tr>
 
         </tr>
Line 163: Line 174:
 
             <td><em><font color="#000000">Physcomitrella patens</font></em></td>
 
             <td><em><font color="#000000">Physcomitrella patens</font></em></td>
 
             <td align="right"><font color="#000000">480,000,000</font></td>
 
             <td align="right"><font color="#000000">480,000,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><font color="#000000">First genome of a bryophyte, January 2008 <sup id="cite_ref-16" class="reference"><font size="2"><span>[</span>17<span>]</span></font></sup></font></td>
 
             <td><font color="#000000">First genome of a bryophyte, January 2008 <sup id="cite_ref-16" class="reference"><font size="2"><span>[</span>17<span>]</span></font></sup></font></td>
 
         </tr>
 
         </tr>
Line 170: Line 181:
 
             <td><em><font color="#000000">Saccharomyces cerevisiae</font></em></td>
 
             <td><em><font color="#000000">Saccharomyces cerevisiae</font></em></td>
 
             <td align="right"><font color="#000000">12,100,000</font></td>
 
             <td align="right"><font color="#000000">12,100,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><sup id="cite_ref-17" class="reference"><font size="2"><font color="#000000"><span>[</span>18<span>]</span></font></font></sup></td>
 
             <td><sup id="cite_ref-17" class="reference"><font size="2"><font color="#000000"><span>[</span>18<span>]</span></font></font></sup></td>
 
         </tr>
 
         </tr>
Line 177: Line 188:
 
             <td><em><font color="#000000">Aspergillus nidulans</font></em></td>
 
             <td><em><font color="#000000">Aspergillus nidulans</font></em></td>
 
             <td align="right"><font color="#000000">30,000,000</font></td>
 
             <td align="right"><font color="#000000">30,000,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 183: Line 194:
 
             <td><em><font color="#000000">Caenorhabditis elegans</font></em></td>
 
             <td><em><font color="#000000">Caenorhabditis elegans</font></em></td>
 
             <td align="right"><font color="#000000">100,300,000</font></td>
 
             <td align="right"><font color="#000000">100,300,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><font color="#000000">First multicellular animal genome, December 1998<sup id="cite_ref-18" class="reference"><font size="2"><span>[</span>19<span>]</span></font></sup></font></td>
 
             <td><font color="#000000">First multicellular animal genome, December 1998<sup id="cite_ref-18" class="reference"><font size="2"><span>[</span>19<span>]</span></font></sup></font></td>
 
         </tr>
 
         </tr>
Line 190: Line 201:
 
             <td><em><font color="#000000">Pratylenchus coffeae</font></em></td>
 
             <td><em><font color="#000000">Pratylenchus coffeae</font></em></td>
 
             <td align="right"><font color="#000000">20,000,000</font></td>
 
             <td align="right"><font color="#000000">20,000,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><font color="#000000">Smallest animal genome known<sup id="cite_ref-19" class="reference"><font size="2"><span>[</span>20<span>]</span></font></sup></font></td>
 
             <td><font color="#000000">Smallest animal genome known<sup id="cite_ref-19" class="reference"><font size="2"><span>[</span>20<span>]</span></font></sup></font></td>
 
         </tr>
 
         </tr>
Line 197: Line 208:
 
             <td><font color="#000000"><em>Drosophila melanogaster</em> (fruit fly)</font></td>
 
             <td><font color="#000000"><em>Drosophila melanogaster</em> (fruit fly)</font></td>
 
             <td align="right"><font color="#000000">130,000,000</font></td>
 
             <td align="right"><font color="#000000">130,000,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><sup id="cite_ref-Adams_2000_20-0" class="reference"><font size="2"><font color="#000000"><span>[</span>21<span>]</span></font></font></sup></td>
 
             <td><sup id="cite_ref-Adams_2000_20-0" class="reference"><font size="2"><font color="#000000"><span>[</span>21<span>]</span></font></font></sup></td>
 
         </tr>
 
         </tr>
Line 204: Line 215:
 
             <td><font color="#000000"><em>Bombyx mori</em> (silk moth)</font></td>
 
             <td><font color="#000000"><em>Bombyx mori</em> (silk moth)</font></td>
 
             <td align="right"><font color="#000000">530,000,000</font></td>
 
             <td align="right"><font color="#000000">530,000,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 210: Line 221:
 
             <td><font color="#000000"><em>Apis mellifera</em> (honey bee)</font></td>
 
             <td><font color="#000000"><em>Apis mellifera</em> (honey bee)</font></td>
 
             <td align="right"><font color="#000000">236,000,000</font></td>
 
             <td align="right"><font color="#000000">236,000,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 216: Line 227:
 
             <td><font color="#000000"><em>Tetraodon nigroviridis</em> (type of puffer fish)</font></td>
 
             <td><font color="#000000"><em>Tetraodon nigroviridis</em> (type of puffer fish)</font></td>
 
             <td align="right"><font color="#000000">385,000,000</font></td>
 
             <td align="right"><font color="#000000">385,000,000</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
             <td><font color="#000000">Smallest vertebrate genome known</font></td>
 
             <td><font color="#000000">Smallest vertebrate genome known</font></td>
 
         </tr>
 
         </tr>
Line 224: Line 235:
 
             <td align="right"><font color="#000000">3,200,000,000</font></td>
 
             <td align="right"><font color="#000000">3,200,000,000</font></td>
 
             <td align="right"><font color="#000000">3</font></td>
 
             <td align="right"><font color="#000000">3</font></td>
             <td><font color="#000000"></font></td>
+
             <td>&nbsp;</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 235: Line 246:
 
     </tbody>
 
     </tbody>
 
</table>
 
</table>
<p><font color="#000000"><em>Note:</em> The DNA from a single (diploid) human cell if the 46 chromosomes were connected end-to-end and straightened, would have a length of ~2 m and a width of ~2.4 nanometers.</font></p>
+
</p>
<p><font color="#000000">Since genomes and their organisms are very complex, one research strategy is to reduce the number of genes in a genome to the bare minimum and still have the organism in question survive. There is experimental work being done on minimal genomes for single cell organisms as well as minimal genomes for multicellular organisms (see Developmental biology). The work is both <em>in vivo</em> and <em>in silico</em>.<sup id="cite_ref-21" class="reference"><font size="2"><span>[</span>22<span>]</span></font></sup><sup id="cite_ref-22" class="reference"><font size="2"><span>[</span>23<span>]</span></font></sup></font></p>
+
<p><span style="font-size: small"><font color="#000000"><em>Note:</em> The DNA from a single (diploid) human cell if the 46 chromosomes were connected end-to-end and straightened, would have a length of ~2 m and a width of ~2.4 nanometers.</font></span></p>
 +
<p><span style="font-size: small"><font color="#000000">Since genomes and their organisms are very complex, one research strategy is to reduce the number of genes in a genome to the bare minimum and still have the organism in question survive. There is experimental work being done on minimal genomes for single cell organisms as well as minimal genomes for multicellular organisms (see Developmental biology). The work is both <em>in vivo</em> and <em>in silico</em>.<sup id="cite_ref-21" class="reference">[22]</sup><sup id="cite_ref-22" class="reference">[23]</sup></font></span></p>
 
<h2><span id="Genome_evolution" class="mw-headline"><font color="#000000">Genome evolution</font></span></h2>
 
<h2><span id="Genome_evolution" class="mw-headline"><font color="#000000">Genome evolution</font></span></h2>
<p><font color="#000000">Genomes are more than the sum of an organism's genes and have traits that may be measured and studied without reference to the details of any particular genes and their products. Researchers compare traits such as <em>chromosome number</em> (karyotype), genome size, gene order, codon usage bias, and GC-content to determine what mechanisms could have produced the great variety of genomes that exist today (for recent overviews, see Brown 2002; Saccone and Pesole 2003; Benfey and Protopapas 2004; Gibson and Muse 2004; Reese 2004; Gregory 2005).</font></p>
+
<p><span style="font-size: small"><font color="#000000">Genomes are more than the sum of an organism's genes and have traits that may be measured and studied without reference to the details of any particular genes and their products. Researchers compare traits such as <em>chromosome number</em> (karyotype), genome size, gene order, codon usage bias, and GC-content to determine what mechanisms could have produced the great variety of genomes that exist today (for recent overviews, see Brown 2002; Saccone and Pesole 2003; Benfey and Protopapas 2004; Gibson and Muse 2004; Reese 2004; Gregory 2005).</font></span></p>
<p><font color="#000000">Duplications play a major role in shaping the genome. Duplications may range from extension of short tandem repeats, to duplication of a cluster of genes, and all the way to duplications of entire chromosomes or even entire genomes. Such duplications are probably fundamental to the creation of genetic novelty.</font></p>
+
<p><span style="font-size: small"><font color="#000000">Duplications play a major role in shaping the genome. Duplications may range from extension of short tandem repeats, to duplication of a cluster of genes, and all the way to duplications of entire chromosomes or even entire genomes. Such duplications are probably fundamental to the creation of genetic novelty.</font></span></p>
<p><font color="#000000">Horizontal gene transfer is invoked to explain how there is often extreme similarity between small portions of the genomes of two organisms that are otherwise very distantly related. Horizontal gene transfer seems to be common among many microbes. Also, eukaryotic cells seem to have experienced a transfer of some genetic material from their chloroplast and mitochondrial genomes to their nuclear chromosomes.</font></p>
+
<p><span style="font-size: small"><font color="#000000">Horizontal gene transfer is invoked to explain how there is often extreme similarity between small portions of the genomes of two organisms that are otherwise very distantly related. Horizontal gene transfer seems to be common among many microbes. Also, eukaryotic cells seem to have experienced a transfer of some genetic material from their chloroplast and mitochondrial genomes to their nuclear chromosomes.</font></span></p>
 
<h2><span id="References" class="mw-headline"><font color="#000000">References</font></span></h2>
 
<h2><span id="References" class="mw-headline"><font color="#000000">References</font></span></h2>
 
<div style="column-count: 2; -moz-column-count: 2; -webkit-column-count: 2" class="references-small references-column-count references-column-count-2">
 
<div style="column-count: 2; -moz-column-count: 2; -webkit-column-count: 2" class="references-small references-column-count references-column-count-2">
 
<ol class="references">
 
<ol class="references">
    <li id="cite_note-0"><strong><a href="#cite_ref-0
+
    <li id="cite_note-0"><strong><a href="#cite_ref-0
 
</ol>
 
</ol>
 
</div>
 
</div>
 
<h2><span id="Further_reading" class="mw-headline">Further reading</span></h2>
 
<h2><span id="Further_reading" class="mw-headline">Further reading</span></h2>
 
<ul>
 
<ul>
     <li><span class="citation book">Benfey, P.; Protopapas, A.D. (2004). <em>Essentials of Genomics</em>. Prentice Hall.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Essentials+of+Genomics&amp;rft.aulast=Benfey&amp;rft.aufirst=P.&amp;rft.au=Benfey%2C%26%2332%3BP.&amp;rft.date=2004&amp;rft.pub=Prentice+Hall&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
     <li><span class="citation book">Benfey, P.; Protopapas, A.D. (2004). <em>Essentials of Genomics</em>. Prentice Hall.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Essentials+of+Genomics&amp;rft.aulast=Benfey&amp;rft.aufirst=P.&amp;rft.au=Benfey%2C%26%2332%3BP.&amp;rft.date=2004&amp;rft.pub=Prentice+Hall&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li>
     <li><span class="citation book">Brown, Terence A. (2002). <em>Genomes 2</em>. Oxford: Bios Scientific Publishers. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/978-1859960295" href="/wiki/Special:BookSources/978-1859960295"><font color="#0645ad">978-1859960295</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Genomes+2&amp;rft.aulast=Brown&amp;rft.aufirst=Terence+A.&amp;rft.au=Brown%2C%26%2332%3BTerence+A.&amp;rft.date=2002&amp;rft.place=Oxford&amp;rft.pub=Bios+Scientific+Publishers&amp;rft.isbn=978-1859960295&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
     <li><span class="citation book">Brown, Terence A. (2002). <em>Genomes 2</em>. Oxford: Bios Scientific Publishers. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/978-1859960295" href="/wiki/Special:BookSources/978-1859960295"><font color="#0645ad">978-1859960295</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Genomes+2&amp;rft.aulast=Brown&amp;rft.aufirst=Terence+A.&amp;rft.au=Brown%2C%26%2332%3BTerence+A.&amp;rft.date=2002&amp;rft.place=Oxford&amp;rft.pub=Bios+Scientific+Publishers&amp;rft.isbn=978-1859960295&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li>
     <li><span class="citation book">Gibson, Greg; Muse, Spencer V. (2004). <em>A Primer of Genome Science</em> (Second ed.). Sunderland, Mass: Sinauer Assoc. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/0-87893-234-8" href="/wiki/Special:BookSources/0-87893-234-8"><font color="#0645ad">0-87893-234-8</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Primer+of+Genome+Science&amp;rft.aulast=Gibson&amp;rft.aufirst=Greg&amp;rft.au=Gibson%2C%26%2332%3BGreg&amp;rft.date=2004&amp;rft.edition=Second&amp;rft.place=Sunderland%2C+Mass&amp;rft.pub=Sinauer+Assoc&amp;rft.isbn=0-87893-234-8&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
     <li><span class="citation book">Gibson, Greg; Muse, Spencer V. (2004). <em>A Primer of Genome Science</em> (Second ed.). Sunderland, Mass: Sinauer Assoc. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/0-87893-234-8" href="/wiki/Special:BookSources/0-87893-234-8"><font color="#0645ad">0-87893-234-8</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Primer+of+Genome+Science&amp;rft.aulast=Gibson&amp;rft.aufirst=Greg&amp;rft.au=Gibson%2C%26%2332%3BGreg&amp;rft.date=2004&amp;rft.edition=Second&amp;rft.place=Sunderland%2C+Mass&amp;rft.pub=Sinauer+Assoc&amp;rft.isbn=0-87893-234-8&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li>
     <li><span class="citation book">Gregory, T. Ryan (ed) (2005). <em><a title="The Evolution of the Genome" href="/wiki/The_Evolution_of_the_Genome"><font color="#0645ad">The Evolution of the Genome</font></a></em>. Elsevier. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/0-12-301463-8" href="/wiki/Special:BookSources/0-12-301463-8"><font color="#0645ad">0-12-301463-8</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=%5B%5BThe+Evolution+of+the+Genome%5D%5D&amp;rft.aulast=Gregory&amp;rft.aufirst=T.+Ryan+%28ed%29&amp;rft.au=Gregory%2C%26%2332%3BT.+Ryan+%28ed%29&amp;rft.date=2005&amp;rft.pub=Elsevier&amp;rft.isbn=0-12-301463-8&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
     <li><span class="citation book">Gregory, T. Ryan (ed) (2005). <em><a title="The Evolution of the Genome" href="/wiki/The_Evolution_of_the_Genome"><font color="#0645ad">The Evolution of the Genome</font></a></em>. Elsevier. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/0-12-301463-8" href="/wiki/Special:BookSources/0-12-301463-8"><font color="#0645ad">0-12-301463-8</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=%5B%5BThe+Evolution+of+the+Genome%5D%5D&amp;rft.aulast=Gregory&amp;rft.aufirst=T.+Ryan+%28ed%29&amp;rft.au=Gregory%2C%26%2332%3BT.+Ryan+%28ed%29&amp;rft.date=2005&amp;rft.pub=Elsevier&amp;rft.isbn=0-12-301463-8&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li>
     <li><span class="citation book">Reece, Richard J. (2004). <em>Analysis of Genes and Genomes</em>. Chichester: John Wiley &amp; Sons. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/0-470-84379-9" href="/wiki/Special:BookSources/0-470-84379-9"><font color="#0645ad">0-470-84379-9</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analysis+of+Genes+and+Genomes&amp;rft.aulast=Reece&amp;rft.aufirst=Richard+J.&amp;rft.au=Reece%2C%26%2332%3BRichard+J.&amp;rft.date=2004&amp;rft.place=Chichester&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.isbn=0-470-84379-9&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
     <li><span class="citation book">Reece, Richard J. (2004). <em>Analysis of Genes and Genomes</em>. Chichester: John Wiley &amp; Sons. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/0-470-84379-9" href="/wiki/Special:BookSources/0-470-84379-9"><font color="#0645ad">0-470-84379-9</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analysis+of+Genes+and+Genomes&amp;rft.aulast=Reece&amp;rft.aufirst=Richard+J.&amp;rft.au=Reece%2C%26%2332%3BRichard+J.&amp;rft.date=2004&amp;rft.place=Chichester&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.isbn=0-470-84379-9&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li>
     <li><span class="citation book">Saccone, Cecilia; Pesole, Graziano (2003). <em>Handbook of Comparative Genomics</em>. Chichester: John Wiley &amp; Sons. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/0-471-39128-X" href="/wiki/Special:BookSources/0-471-39128-X"><font color="#0645ad">0-471-39128-X</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Comparative+Genomics&amp;rft.aulast=Saccone&amp;rft.aufirst=Cecilia&amp;rft.au=Saccone%2C%26%2332%3BCecilia&amp;rft.date=2003&amp;rft.place=Chichester&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.isbn=0-471-39128-X&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
     <li><span class="citation book">Saccone, Cecilia; Pesole, Graziano (2003). <em>Handbook of Comparative Genomics</em>. Chichester: John Wiley &amp; Sons. <a title="International Standard Book Number" href="/wiki/International_Standard_Book_Number"><font color="#0645ad">ISBN</font></a>&nbsp;<a title="Special:BookSources/0-471-39128-X" href="/wiki/Special:BookSources/0-471-39128-X"><font color="#0645ad">0-471-39128-X</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Comparative+Genomics&amp;rft.aulast=Saccone&amp;rft.aufirst=Cecilia&amp;rft.au=Saccone%2C%26%2332%3BCecilia&amp;rft.date=2003&amp;rft.place=Chichester&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.isbn=0-471-39128-X&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li>
     <li><span class="citation Journal">Werner, E. (2003). &quot;In silico multicellular systems biology and minimal genomes&quot;. <em>Drug Discov Today</em> <strong>8</strong> (24): 1121&ndash;1127. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1016%2FS1359-6446%2803%2902918-0"><font color="#3366bb">10.1016/S1359-6446(03)02918-0</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/14678738"><font color="#3366bb">14678738</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=In+silico+multicellular+systems+biology+and+minimal+genomes&amp;rft.jtitle=Drug+Discov+Today&amp;rft.aulast=Werner&amp;rft.aufirst=E.&amp;rft.au=Werner%2C%26%2332%3BE.&amp;rft.date=2003&amp;rft.volume=8&amp;rft.issue=24&amp;rft.pages=1121%E2%80%931127&amp;rft_id=info:doi/10.1016%2FS1359-6446%2803%2902918-0&amp;rft_id=info:pmid/14678738&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="DISPLAY: none">&nbsp;</span></span> </li>
+
     <li><span class="citation Journal">Werner, E. (2003). &quot;In silico multicellular systems biology and minimal genomes&quot;. <em>Drug Discov Today</em> <strong>8</strong> (24): 1121&ndash;1127. <a title="Digital object identifier" href="/wiki/Digital_object_identifier"><font color="#0645ad">doi</font></a>:<a class="external text" rel="nofollow" href="http://dx.doi.org/10.1016%2FS1359-6446%2803%2902918-0"><font color="#3366bb">10.1016/S1359-6446(03)02918-0</font></a>. <a class="mw-redirect" title="PubMed Identifier" href="/wiki/PubMed_Identifier"><font color="#0645ad">PMID</font></a>&nbsp;<a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/pubmed/14678738"><font color="#3366bb">14678738</font></a>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=In+silico+multicellular+systems+biology+and+minimal+genomes&amp;rft.jtitle=Drug+Discov+Today&amp;rft.aulast=Werner&amp;rft.aufirst=E.&amp;rft.au=Werner%2C%26%2332%3BE.&amp;rft.date=2003&amp;rft.volume=8&amp;rft.issue=24&amp;rft.pages=1121%E2%80%931127&amp;rft_id=info:doi/10.1016%2FS1359-6446%2803%2902918-0&amp;rft_id=info:pmid/14678738&amp;rfr_id=info:sid/en.wikipedia.org:Genome"><span style="display: none">&nbsp;</span></span></li>
 
</ul>
 
</ul>
 
<h2><span id="External_links" class="mw-headline">External links</span></h2>
 
<h2><span id="External_links" class="mw-headline">External links</span></h2>
 
<ul>
 
<ul>
     <li><a class="external text" rel="nofollow" href="http://learn.genetics.utah.edu/content/begin/dna/builddna/"><font color="#3366bb">Build a DNA Molecule</font></a> </li>
+
    <li><font color="#3366bb">[http://genomics.org Genomics.org]</font></li>
     <li><a class="external text" rel="nofollow" href="http://www.genomenewsnetwork.org/articles/02_01/Sizing_genomes.shtml"><font color="#3366bb">Some comparative genome sizes</font></a> </li>
+
    <li>[http://omics.org Omics.org]</li>
     <li><a class="external text" rel="nofollow" href="http://www.dnai.org/"><font color="#3366bb">DNA Interactive: The History of DNA Science</font></a> </li>
+
     <li><a class="external text" rel="nofollow" href="http://learn.genetics.utah.edu/content/begin/dna/builddna/"><font color="#3366bb">Build a DNA Molecule</font></a></li>
     <li><a class="external text" rel="nofollow" href="http://www.dnaftb.org/"><font color="#3366bb">DNA From The Beginning</font></a> </li>
+
     <li><a class="external text" rel="nofollow" href="http://www.genomenewsnetwork.org/articles/02_01/Sizing_genomes.shtml"><font color="#3366bb">Some comparative genome sizes</font></a></li>
     <li><a class="external text" rel="nofollow" href="http://www.genome.gov/10001772"><font color="#3366bb">All About The Human Genome Project from Genome.gov</font></a> </li>
+
     <li><a class="external text" rel="nofollow" href="http://www.dnai.org/"><font color="#3366bb">DNA Interactive: The History of DNA Science</font></a></li>
     <li><a class="external text" rel="nofollow" href="http://www.genomesize.com/"><font color="#3366bb">Animal genome size database</font></a> </li>
+
     <li><a class="external text" rel="nofollow" href="http://www.dnaftb.org/"><font color="#3366bb">DNA From The Beginning</font></a></li>
     <li><a class="external text" rel="nofollow" href="http://www.rbgkew.org.uk/cval/homepage.html"><font color="#3366bb">Plant genome size database</font></a> </li>
+
     <li><a class="external text" rel="nofollow" href="http://www.genome.gov/10001772"><font color="#3366bb">All About The Human Genome Project from Genome.gov</font></a></li>
     <li><a class="external text" rel="nofollow" href="http://www.genomesonline.org/"><font color="#3366bb">GOLD:Genomes OnLine Database</font></a> </li>
+
     <li><a class="external text" rel="nofollow" href="http://www.genomesize.com/"><font color="#3366bb">Animal genome size database</font></a></li>
     <li><a class="external text" rel="nofollow" href="http://www.genomenewsnetwork.org/"><font color="#3366bb">The Genome News Network</font></a> </li>
+
     <li><a class="external text" rel="nofollow" href="http://www.rbgkew.org.uk/cval/homepage.html"><font color="#3366bb">Plant genome size database</font></a></li>
     <li><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprj"><font color="#3366bb">NCBI Entrez Genome Project database</font></a> </li>
+
     <li><a class="external text" rel="nofollow" href="http://www.genomesonline.org/"><font color="#3366bb">GOLD:Genomes OnLine Database</font></a></li>
     <li><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/About/primer/genetics_genome.html"><font color="#3366bb">NCBI Genome Primer</font></a> </li>
+
     <li><a class="external text" rel="nofollow" href="http://www.genomenewsnetwork.org/"><font color="#3366bb">The Genome News Network</font></a></li>
     <li><a class="external text" rel="nofollow" href="http://news.bbc.co.uk/1/hi/sci/tech/4994088.stm"><font color="#3366bb">BBC News - Final genome 'chapter' published</font></a> </li>
+
     <li><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprj"><font color="#3366bb">NCBI Entrez Genome Project database</font></a></li>
     <li><a class="external text" rel="nofollow" href="https://www.crops.org/genome/"><font color="#3366bb">The Plant Genome</font></a> </li>
+
     <li><a class="external text" rel="nofollow" href="http://www.ncbi.nlm.nih.gov/About/primer/genetics_genome.html"><font color="#3366bb">NCBI Genome Primer</font></a></li>
     <li><a class="external text" rel="nofollow" href="http://img.jgi.doe.gov/"><font color="#3366bb">IMG</font></a> The Integrated Microbial Genomes system, for genome analysis by the DOE-JGI. </li>
+
     <li><a class="external text" rel="nofollow" href="http://news.bbc.co.uk/1/hi/sci/tech/4994088.stm"><font color="#3366bb">BBC News - Final genome 'chapter' published</font></a></li>
     <li><a class="external text" rel="nofollow" href="http://camera.calit2.net/index.php/"><font color="#3366bb">CAMERA</font></a> Cyberinfrastructure for Metagenomics, data repository and bioinformatics tools for metagenomic research </li>
+
     <li><a class="external text" rel="nofollow" href="https://www.crops.org/genome/"><font color="#3366bb">The Plant Genome</font></a></li>
     <li><a class="external text" rel="nofollow" href="http://www.genecards.org/"><font color="#3366bb">GeneCards</font></a> an integrated database of human genes. </li>
+
     <li><a class="external text" rel="nofollow" href="http://img.jgi.doe.gov/"><font color="#3366bb">IMG</font></a> The Integrated Microbial Genomes system, for genome analysis by the DOE-JGI.</li>
     <li><a class="external text" rel="nofollow" href="http://genome.igib.res.in/"><font color="#3366bb">Genome@IGIB</font></a> Resources and News on the Zebrafish Genome Project @ IGIB. </li>
+
     <li><a class="external text" rel="nofollow" href="http://camera.calit2.net/index.php/"><font color="#3366bb">CAMERA</font></a> Cyberinfrastructure for Metagenomics, data repository and bioinformatics tools for metagenomic research</li>
     <li><a class="external text" rel="nofollow" href="http://www.geknome.com"><font color="#3366bb">GeKnome Technologies Next-Gen Sequencing Data Analysis</font></a> Next-Gen Sequencing Data Analysis for <a title="Illumina" href="/wiki/Illumina"><font color="#0645ad">Illumina</font></a> and <a title="454" href="/wiki/454"><font color="#0645ad">454</font></a> Service from GeKnome Technologies. </li>
+
     <li><a class="external text" rel="nofollow" href="http://www.genecards.org/"><font color="#3366bb">GeneCards</font></a> an integrated database of human genes.</li>
     <li><a class="external text" rel="nofollow" href="http://ascb.org/ibioseminars/brenner/brenner1.cfm"><font color="#3366bb">What Genomes Can Tell Us About the Past</font></a> - lecture by <a title="Sydney Brenner" href="/wiki/Sydney_Brenner"><font color="#0645ad">Sydney Brenner</font></a> </li>
+
     <li><a class="external text" rel="nofollow" href="http://genome.igib.res.in/"><font color="#3366bb">Genome@IGIB</font></a> Resources and News on the Zebrafish Genome Project @ IGIB.</li>
     <li><a class="external text" rel="nofollow" href="http://www.imame.org/form/genome--mid80-frz.htm"><font color="#3366bb">Genome metaphor, reflecting from formal-net hierarchies, and software binaries</font></a>. </li>
+
     <li><a class="external text" rel="nofollow" href="http://www.geknome.com"><font color="#3366bb">GeKnome Technologies Next-Gen Sequencing Data Analysis</font></a> Next-Gen Sequencing Data Analysis for <a title="Illumina" href="/wiki/Illumina"><font color="#0645ad">Illumina</font></a> and <a title="454" href="/wiki/454"><font color="#0645ad">454</font></a> Service from GeKnome Technologies.</li>
 +
     <li><a class="external text" rel="nofollow" href="http://ascb.org/ibioseminars/brenner/brenner1.cfm"><font color="#3366bb">What Genomes Can Tell Us About the Past</font></a> - lecture by <a title="Sydney Brenner" href="/wiki/Sydney_Brenner"><font color="#0645ad">Sydney Brenner</font></a></li>
 +
     <li><a class="external text" rel="nofollow" href="http://www.imame.org/form/genome--mid80-frz.htm"><font color="#3366bb">Genome metaphor, reflecting from formal-net hierarchies, and software binaries</font></a>.</li>
 
</ul>
 
</ul>

Latest revision as of 17:09, 3 February 2011

The genome is the entire set of sequences in an organism that encodes information for survival and the continuation of the species it belongs to.

 

Main function of genomes

The main function of genome is information storaging and processing to form an entity that utilizes energy to keep processing signals to interact with other genomes in the whole eco-system.

The genome is universal in the universe and aliens living on other planets also have genomes. The chemical construction may be slightly different but the information deposition and processing function is the same.

The information is usually stored in DNA or RNA in the organisms found on Earth.

The genome is often classified into the protein coding genes and the non-coding sequences of the DNA historically.[1]

 

The essence of genome

The essence of genomes is that it is the foundation of spontaneous information processing network that can utilizes energy in time axis. The genome is a kind of linearly expressed language system.

 

Origin of Term

The term was adapted in 1920 by Hans Winkler, Professor of Botany at the University of Hamburg, Germany. In Greek, the word genome (γίνομαι) means I become, I am born, to come into being.

The Oxford English Dictionary suggests the name to be a blend of the words gene and chromosome. A few related -ome words already existed, such as biome and rhizome, forming a vocabulary into which genome fits systematically.[2]

Overview

Some organisms have multiple copies of chromosomes, diploid, triploid, tetraploid and so on. In classical genetics, in a sexually reproducing organism (typically eukarya) the gamete has half of the number of chromosome of the somatic cell and the genome is a full set of chromosomes in a gamete. In haploid organisms, including cells of bacteria, archaea, and in organelles including mitochondria and chloroplasts, or viruses, that similarly contain genes, the single or set of circular and/or linear chains of DNA (or RNA for some viruses), likewise constitute the genome. The term genome can be applied specifically to mean that stored on a complete set of nuclear DNA (i.e., the "nuclear genome") but can also be applied to that stored within organelles that contain their own DNA, as with the "mitochondrial genome" or the "chloroplast genome". Additionally, the genome can comprise nonchromosomal genetic elements such as viruses, plasmids, and transposable elements[3]. When people say that the genome of a sexually reproducing species has been "sequenced", typically they are referring to a determination of the sequences of one set of autosomes and one of each type of sex chromosome, which together represent both of the possible sexes. Even in species that exist in only one sex, what is described as "a genome sequence" may be a composite read from the chromosomes of various individuals. In general use, the phrase "genetic makeup" is sometimes used conversationally to mean the genome of a particular individual or organism. The study of the global properties of genomes of related organisms is usually referred to as genomics, which distinguishes it from genetics which generally studies the properties of single genes or groups of genes.

Both the number of base pairs and the number of genes vary widely from one species to another, and there is only a rough correlation between the two (an observation known as the C-value paradox). At present, the highest known number of genes is around 60,000, for the protozoan causing trichomoniasis (see List of sequenced eukaryotic genomes), almost three times as many as in the human genome.

An analogy to the human genome stored on DNA is that of instructions stored in a library:

  • The library would contain 46 books (chromosomes)
  • The books range in size from 400 to 3340 pages (genes)
  • which is 48 to 250 million letters (A,C,G,T) per book.
  • Hence the library contains over six billion letters total;
  • The library fits into a cell nucleus the size of a pinpoint;
  • A copy of the library (all 46 books) is contained in almost every cell of our body.

Types

Most biological entities that are more complex than a virus sometimes or always carry additional genetic material besides that which resides in their chromosomes. In some contexts, such as sequencing the genome of a pathogenic microbe, "genome" is meant to include information stored on this auxiliary material, which is carried in plasmids. In such circumstances then, "genome" describes all of the genes and information on non-coding DNA that have the potential to be present.

In eukaryotes such as plants, protozoa and animals, however, "genome" carries the typical connotation of only information on chromosomal DNA. So although these organisms contain chloroplasts and/or mitochondria that have their own DNA, the genetic information contained by DNA within these organelles is not considered part of the genome. In fact, mitochondria are sometimes said to have their own genome often referred to as the "mitochondrial genome". The DNA found within the chloroplast may be referred to as the "plastome".

Genomes and genetic variation

Note that a genome does not capture the genetic diversity or the genetic polymorphism of a species. For example, the human genome sequence in principle could be determined from just half the information on the DNA of one cell from one individual. To learn what variations in genetic information underlie particular traits or diseases requires comparisons across individuals. This point explains the common usage of "genome" (which parallels a common usage of "gene") to refer not to the information in any particular DNA sequence, but to a whole family of sequences that share a biological context.

Although this concept may seem counter intuitive, it is the same concept that says there is no particular shape that is the shape of a cheetah. Cheetahs vary, and so do the sequences of their genomes. Yet both the individual animals and their sequences share commonalities, so one can learn something about cheetahs and "cheetah-ness" from a single example of either.

 

Sequencing and mapping

The Human Genome Project was organized to map and to sequence the human genome. Other genome projects include mouse, rice, the plant Arabidopsis thaliana, the puffer fish, bacteria like E. coli, etc. In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome (bacteriophage MS2). The first DNA-genome project to be completed was the Phage Φ-X174, with only 5386 base pairs, which was sequenced by Fred Sanger in 1977 . The first bacterial genome to be completed was that of Haemophilus influenzae, completed by a team at The Institute for Genomic Research in 1995.

The development of new technologies has dramatically decreased the difficulty and cost of sequencing, and the number of complete genome sequences is rising rapidly. Among many genome database sites, the one maintained by the US National Institutes of Health is inclusive.[4]

These new technologies open up the prospect of personal genome sequencing as an important diagnostic tool. A major step toward that goal was the May 2007 New York Times announcement that the full genome of DNA pioneer James D. Watson was deciphered.[5]

Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome.[6][7]

Comparison of different genome sizes

Organism type↓ Organism↓ Genome size (base pairs)↓ mass - in pg↓ Note↓
Virus Bacteriophage MS2 3,569 0.000002 First sequenced RNA-genome[8]
Virus SV40 5,224   [9]
Virus Phage Φ-X174 5,386   First sequenced DNA-genome[10]
Virus HIV 9749[11]    
Virus Phage λ 48,502  
Virus Mimivirus 1,181,404   Largest known viral genome
Bacterium Haemophilus influenzae 1,830,000   First genome of living organism, July 1995[12]
Bacterium Carsonella ruddii 159,662   Smallest non-viral genome.[13]
Bacterium Buchnera aphidicola 600,000  
Bacterium Wigglesworthia glossinidia 700,000  
Bacterium Escherichia coli 4,600,000   [14]
Bacterium Solibacter usitatus (strain Ellin 6076) 9,970,000   Largest known Bacterial genome
Amoeboid Polychaos dubium ("Amoeba" dubia) 670,000,000,000 737 Largest known genome.[15]
Plant Arabidopsis thaliana 157,000,000   First plant genome sequenced, December 2000.[16]
Plant Genlisea margaretae 63,400,000   Smallest recorded flowering plant genome, 2006.[16]
Plant Fritillaria assyrica 130,000,000,000  
Plant Populus trichocarpa 480,000,000   First tree genome, September 2006
Moss Physcomitrella patens 480,000,000   First genome of a bryophyte, January 2008 [17]
Yeast Saccharomyces cerevisiae 12,100,000   [18]
Fungus Aspergillus nidulans 30,000,000  
Nematode Caenorhabditis elegans 100,300,000   First multicellular animal genome, December 1998[19]
Nematode Pratylenchus coffeae 20,000,000   Smallest animal genome known[20]
Insect Drosophila melanogaster (fruit fly) 130,000,000   [21]
Insect Bombyx mori (silk moth) 530,000,000  
Insect Apis mellifera (honey bee) 236,000,000  
Fish Tetraodon nigroviridis (type of puffer fish) 385,000,000   Smallest vertebrate genome known
Mammal Homo sapiens 3,200,000,000 3  
Fish Protopterus aethiopicus (marbled lungfish) 130,000,000,000 143 Largest vertebrate genome known

Note: The DNA from a single (diploid) human cell if the 46 chromosomes were connected end-to-end and straightened, would have a length of ~2 m and a width of ~2.4 nanometers.

Since genomes and their organisms are very complex, one research strategy is to reduce the number of genes in a genome to the bare minimum and still have the organism in question survive. There is experimental work being done on minimal genomes for single cell organisms as well as minimal genomes for multicellular organisms (see Developmental biology). The work is both in vivo and in silico.[22][23]

Genome evolution

Genomes are more than the sum of an organism's genes and have traits that may be measured and studied without reference to the details of any particular genes and their products. Researchers compare traits such as chromosome number (karyotype), genome size, gene order, codon usage bias, and GC-content to determine what mechanisms could have produced the great variety of genomes that exist today (for recent overviews, see Brown 2002; Saccone and Pesole 2003; Benfey and Protopapas 2004; Gibson and Muse 2004; Reese 2004; Gregory 2005).

Duplications play a major role in shaping the genome. Duplications may range from extension of short tandem repeats, to duplication of a cluster of genes, and all the way to duplications of entire chromosomes or even entire genomes. Such duplications are probably fundamental to the creation of genetic novelty.

Horizontal gene transfer is invoked to explain how there is often extreme similarity between small portions of the genomes of two organisms that are otherwise very distantly related. Horizontal gene transfer seems to be common among many microbes. Also, eukaryotic cells seem to have experienced a transfer of some genetic material from their chloroplast and mitochondrial genomes to their nuclear chromosomes.

References

  1. ^ Ridley, M. (2006). Genome. New York, NY: Harper Perennial. ISBN 0-06-019497-9
  2. ^ Joshua Lederberg and Alexa T. McCray (2001). "'Ome Sweet 'Omics -- A Genealogical Treasury of Words". The Scientist 15 (7). http://lhncbc.nlm.nih.gov/lhc/docs/published/2001/pub2001047.pdf. 
  3. ^ Madigan M, Martinko J (editors) (2006). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 0-13-144329-1. 
  4. ^ http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome&itool=toolbar
  5. ^ Wade, Nicholas (2007-05-31). "Genome of DNA Pioneer Is Deciphered". The New York Times. http://www.nytimes.com/2007/05/31/science/31cnd-gene.html?em&ex=1180843200&en=19e1d55639350b73&ei=5087%0A. Retrieved 2010-04-02. 
  6. ^ http://www.genomenewsnetwork.org/resources/whats_a_genome/Chp3_1.shtml
  7. ^ http://www.ncbi.nlm.nih.gov/About/primer/mapping.html
  8. ^ Fiers W, et al. (1976). "Complete nucleotide-sequence of bacteriophage MS2-RNA - primary and secondary structure of replicase gene". Nature 260 (5551): 500–507. doi:10.1038/260500a0. PMID 1264203. http://www.nature.com/nature/journal/v260/n5551/abs/260500a0.html. 
  9. ^ Fiers W, Contreras R, Haegemann G, Rogiers R, Van de Voorde A, Van Heuverswyn H, Van Herreweghe J, Volckaert G, Ysebaert M (1978). "Complete nucleotide sequence of SV40 DNA". Nature 273 (5658): 113–120. doi:10.1038/273113a0. PMID 205802. http://www.nature.com/nature/journal/v273/n5658/abs/273113a0.html. 
  10. ^ Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977). "Nucleotide sequence of bacteriophage phi X174 DNA". Nature 265 (5596): 687–695. doi:10.1038/265687a0. PMID 870828. http://www.nature.com/nature/journal/v265/n5596/abs/265687a0.html. 
  11. ^ VIROLOGY - HUMAN IMMUNODEFICIENCY VIRUS AND AIDS, STRUCTURE: The Genome AND PROTEINS of HIV
  12. ^ Fleischmann R, Adams M, White O, Clayton R, Kirkness E, Kerlavage A, Bult C, Tomb J, Dougherty B, Merrick J (1995). "Whole-genome random sequencing and assembly of Haemophilus influenzae Rd". Science 269 (5223): 496–512. doi:10.1126/science.7542800. PMID 7542800. http://www.sciencemag.org/cgi/content/abstract/269/5223/496. 
  13. ^ Nakabachi A, Yamashita A, Toh H, et al. (October 2006). "The 160-kilobase genome of the bacterial endosymbiont Carsonella". Science (journal) 314 (5797): 267. doi:10.1126/science.1134196. PMID 17038615. 
  14. ^ Frederick R. Blattner, Guy Plunkett III, et al. (1997). "The Complete Genome Sequence of Escherichia coli K-12". Science 277 (5331): 1453–1462. doi:10.1126/science.277.5331.1453. PMID 9278503. http://www.sciencemag.org/cgi/content/abstract/277/5331/1453. 
  15. ^ Parfrey, L.W.; Lahr, D.J.G.; Katz, L.A. (2008). "The Dynamic Nature of Eukaryotic Genomes". Molecular Biology and Evolution 25 (4): 787. doi:10.1093/molbev/msn032. PMID 18258610. 
  16. ^ a b Greilhuber, J., Borsch, T., Müller, K., Worberg, A., Porembski, S., and Barthlott, W. (2006). "Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size". Plant Biology 8 (6): 770–777. doi:10.1055/s-2006-924101. PMID 17203433. 
  17. ^ Daniel Lang, Andreas D. Zimmer, Stefan A. Rensing, Ralf Reski(2008): Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends in Plant Science 13, 542-549. [1]
  18. ^ http://www.yeastgenome.org/
  19. ^ The C. elegans Sequencing Consortium (1998). "Genome sequence of the nematode C. elegans: a platform for investigating biology". Science 282 (5396): 2012–2018. doi:10.1126/science.282.5396.2012. PMID 9851916. http://www.sciencemag.org/cgi/content/abstract/282/5396/2012. 
  20. ^ "Gregory, T.R. (2005). Animal Genome Size Database. http://www.genomesize.com.". http://www.genomesize.com/statistics.php?stats=entire#stats_top. 
  21. ^ Adams MD, Celniker SE, Holt RA, et al. (2000). "The genome sequence of Drosophila melanogaster". Science 287 (5461): 2185–95. doi:10.1126/science.287.5461.2185. PMID 10731132. http://www.sciencemag.org/cgi/content/abstract/287/5461/2185. Retrieved 2007-05-25. 
  22. ^ Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA 3rd, Smith HO, Venter JC (2006). "Essential genes of a minimal bacterium.". Proc Natl Acad Sci USA 103 (2): 425–30. doi:10.1073/pnas.0510013103. PMID 16407165. 
  23. ^ Forster AC, Church GM (2006). "Towards synthesis of a minimal cell". Mol Syst Biol. 2:45: 45. doi:10.1038/msb4100090. PMID 16924266. 

Further reading

  • Benfey, P.; Protopapas, A.D. (2004). Essentials of Genomics. Prentice Hall. 
  • Brown, Terence A. (2002). Genomes 2. Oxford: Bios Scientific Publishers. ISBN 978-1859960295. 
  • Gibson, Greg; Muse, Spencer V. (2004). A Primer of Genome Science (Second ed.). Sunderland, Mass: Sinauer Assoc. ISBN 0-87893-234-8. 
  • Gregory, T. Ryan (ed) (2005). The Evolution of the Genome. Elsevier. ISBN 0-12-301463-8. 
  • Reece, Richard J. (2004). Analysis of Genes and Genomes. Chichester: John Wiley & Sons. ISBN 0-470-84379-9. 
  • Saccone, Cecilia; Pesole, Graziano (2003). Handbook of Comparative Genomics. Chichester: John Wiley & Sons. ISBN 0-471-39128-X. 
  • Werner, E. (2003). "In silico multicellular systems biology and minimal genomes". Drug Discov Today 8 (24): 1121–1127. doi:10.1016/S1359-6446(03)02918-0. PMID 14678738. 

External links